ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullid GIF version

Theorem mullid 8017
Description: Identity law for multiplication. Note: see mulrid 8016 for commuted version. (Contributed by NM, 8-Oct-1999.)
Assertion
Ref Expression
mullid (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)

Proof of Theorem mullid
StepHypRef Expression
1 ax-1cn 7965 . . 3 1 ∈ ℂ
2 mulcom 8001 . . 3 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1))
31, 2mpan 424 . 2 (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1))
4 mulrid 8016 . 2 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
53, 4eqtrd 2226 1 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  (class class class)co 5918  cc 7870  1c1 7873   · cmul 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-mulcl 7970  ax-mulcom 7973  ax-mulass 7975  ax-distr 7976  ax-1rid 7979  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921
This theorem is referenced by:  mullidi  8022  mullidd  8037  mulid2d  8038  muladd11  8152  1p1times  8153  mulm1  8419  div1  8722  recdivap  8737  divdivap2  8743  conjmulap  8748  expp1  10617  recan  11253  arisum  11641  geo2sum  11657  prodrbdclem  11714  prodmodclem2a  11719  demoivreALT  11917  gcdadd  12122  gcdid  12123  cncrng  14057  cnfld1  14060
  Copyright terms: Public domain W3C validator