![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mullid | GIF version |
Description: Identity law for multiplication. Note: see mulrid 7957 for commuted version. (Contributed by NM, 8-Oct-1999.) |
Ref | Expression |
---|---|
mullid | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7907 | . . 3 ⊢ 1 ∈ ℂ | |
2 | mulcom 7943 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
3 | 1, 2 | mpan 424 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
4 | mulrid 7957 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
5 | 3, 4 | eqtrd 2210 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 (class class class)co 5878 ℂcc 7812 1c1 7815 · cmul 7819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-resscn 7906 ax-1cn 7907 ax-icn 7909 ax-addcl 7910 ax-mulcl 7912 ax-mulcom 7915 ax-mulass 7917 ax-distr 7918 ax-1rid 7921 ax-cnre 7925 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5881 |
This theorem is referenced by: mullidi 7963 mullidd 7978 mulid2d 7979 muladd11 8093 1p1times 8094 mulm1 8360 div1 8663 recdivap 8678 divdivap2 8684 conjmulap 8689 expp1 10530 recan 11121 arisum 11509 geo2sum 11525 prodrbdclem 11582 prodmodclem2a 11587 demoivreALT 11784 gcdadd 11989 gcdid 11990 cncrng 13603 cnfld1 13606 |
Copyright terms: Public domain | W3C validator |