| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullid | GIF version | ||
| Description: Identity law for multiplication. Note: see mulrid 8111 for commuted version. (Contributed by NM, 8-Oct-1999.) |
| Ref | Expression |
|---|---|
| mullid | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8060 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | mulcom 8096 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
| 3 | 1, 2 | mpan 424 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
| 4 | mulrid 8111 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 5 | 3, 4 | eqtrd 2242 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 1c1 7968 · cmul 7972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-resscn 8059 ax-1cn 8060 ax-icn 8062 ax-addcl 8063 ax-mulcl 8065 ax-mulcom 8068 ax-mulass 8070 ax-distr 8071 ax-1rid 8074 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-iota 5254 df-fv 5302 df-ov 5977 |
| This theorem is referenced by: mullidi 8117 mullidd 8132 mulid2d 8133 muladd11 8247 1p1times 8248 mulm1 8514 div1 8818 recdivap 8833 divdivap2 8839 conjmulap 8844 expp1 10735 recan 11586 arisum 11975 geo2sum 11991 prodrbdclem 12048 prodmodclem2a 12053 demoivreALT 12251 gcdadd 12472 gcdid 12473 cncrng 14498 cnfld1 14501 |
| Copyright terms: Public domain | W3C validator |