| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullid | GIF version | ||
| Description: Identity law for multiplication. Note: see mulrid 8151 for commuted version. (Contributed by NM, 8-Oct-1999.) |
| Ref | Expression |
|---|---|
| mullid | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8100 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | mulcom 8136 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
| 3 | 1, 2 | mpan 424 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
| 4 | mulrid 8151 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 5 | 3, 4 | eqtrd 2262 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 1c1 8008 · cmul 8012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8099 ax-1cn 8100 ax-icn 8102 ax-addcl 8103 ax-mulcl 8105 ax-mulcom 8108 ax-mulass 8110 ax-distr 8111 ax-1rid 8114 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6010 |
| This theorem is referenced by: mullidi 8157 mullidd 8172 mulid2d 8173 muladd11 8287 1p1times 8288 mulm1 8554 div1 8858 recdivap 8873 divdivap2 8879 conjmulap 8884 expp1 10776 recan 11628 arisum 12017 geo2sum 12033 prodrbdclem 12090 prodmodclem2a 12095 demoivreALT 12293 gcdadd 12514 gcdid 12515 cncrng 14541 cnfld1 14544 |
| Copyright terms: Public domain | W3C validator |