ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2times GIF version

Theorem 2times 9199
Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.)
Assertion
Ref Expression
2times (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))

Proof of Theorem 2times
StepHypRef Expression
1 df-2 9130 . . 3 2 = (1 + 1)
21oveq1i 5977 . 2 (2 · 𝐴) = ((1 + 1) · 𝐴)
3 1p1times 8241 . 2 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
42, 3eqtrid 2252 1 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2178  (class class class)co 5967  cc 7958  1c1 7961   + caddc 7963   · cmul 7965  2c2 9122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-mulcl 8058  ax-mulcom 8061  ax-mulass 8063  ax-distr 8064  ax-1rid 8067  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-2 9130
This theorem is referenced by:  times2  9200  2timesi  9201  2txmxeqx  9203  2halves  9301  halfaddsub  9306  avglt2  9312  2timesd  9315  expubnd  10778  subsq2  10829  sinmul  12170  sin2t  12175  cos2t  12176  pythagtriplem4  12706  pythagtriplem14  12715  pythagtriplem16  12717
  Copyright terms: Public domain W3C validator