ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2times GIF version

Theorem 2times 8981
Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.)
Assertion
Ref Expression
2times (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))

Proof of Theorem 2times
StepHypRef Expression
1 df-2 8912 . . 3 2 = (1 + 1)
21oveq1i 5851 . 2 (2 · 𝐴) = ((1 + 1) · 𝐴)
3 1p1times 8028 . 2 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
42, 3syl5eq 2210 1 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  (class class class)co 5841  cc 7747  1c1 7750   + caddc 7752   · cmul 7754  2c2 8904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7841  ax-1cn 7842  ax-icn 7844  ax-addcl 7845  ax-mulcl 7847  ax-mulcom 7850  ax-mulass 7852  ax-distr 7853  ax-1rid 7856  ax-cnre 7860
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-iota 5152  df-fv 5195  df-ov 5844  df-2 8912
This theorem is referenced by:  times2  8982  2timesi  8983  2halves  9082  halfaddsub  9087  avglt2  9092  2timesd  9095  expubnd  10508  subsq2  10558  sinmul  11681  sin2t  11686  cos2t  11687  pythagtriplem4  12196  pythagtriplem14  12205  pythagtriplem16  12207
  Copyright terms: Public domain W3C validator