ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2times GIF version

Theorem 2times 8860
Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.)
Assertion
Ref Expression
2times (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))

Proof of Theorem 2times
StepHypRef Expression
1 df-2 8791 . . 3 2 = (1 + 1)
21oveq1i 5784 . 2 (2 · 𝐴) = ((1 + 1) · 𝐴)
3 1p1times 7908 . 2 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
42, 3syl5eq 2184 1 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  (class class class)co 5774  cc 7630  1c1 7633   + caddc 7635   · cmul 7637  2c2 8783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-resscn 7724  ax-1cn 7725  ax-icn 7727  ax-addcl 7728  ax-mulcl 7730  ax-mulcom 7733  ax-mulass 7735  ax-distr 7736  ax-1rid 7739  ax-cnre 7743
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777  df-2 8791
This theorem is referenced by:  times2  8861  2timesi  8862  2halves  8961  halfaddsub  8966  avglt2  8971  2timesd  8974  expubnd  10362  subsq2  10412  sinmul  11462  sin2t  11467  cos2t  11468
  Copyright terms: Public domain W3C validator