![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnm1 | GIF version |
Description: Multiply an element of ω by 1o. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
nnm1 | ⊢ (𝐴 ∈ ω → (𝐴 ·o 1o) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6435 | . . 3 ⊢ 1o = suc ∅ | |
2 | 1 | oveq2i 5902 | . 2 ⊢ (𝐴 ·o 1o) = (𝐴 ·o suc ∅) |
3 | peano1 4608 | . . . 4 ⊢ ∅ ∈ ω | |
4 | nnmsuc 6496 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ∅ ∈ ω) → (𝐴 ·o suc ∅) = ((𝐴 ·o ∅) +o 𝐴)) | |
5 | 3, 4 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ ω → (𝐴 ·o suc ∅) = ((𝐴 ·o ∅) +o 𝐴)) |
6 | nnm0 6494 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅) | |
7 | 6 | oveq1d 5906 | . . 3 ⊢ (𝐴 ∈ ω → ((𝐴 ·o ∅) +o 𝐴) = (∅ +o 𝐴)) |
8 | nna0r 6497 | . . 3 ⊢ (𝐴 ∈ ω → (∅ +o 𝐴) = 𝐴) | |
9 | 5, 7, 8 | 3eqtrd 2226 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 ·o suc ∅) = 𝐴) |
10 | 2, 9 | eqtrid 2234 | 1 ⊢ (𝐴 ∈ ω → (𝐴 ·o 1o) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ∅c0 3437 suc csuc 4380 ωcom 4604 (class class class)co 5891 1oc1o 6428 +o coa 6432 ·o comu 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-iord 4381 df-on 4383 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-recs 6324 df-irdg 6389 df-1o 6435 df-oadd 6439 df-omul 6440 |
This theorem is referenced by: nnm2 6545 mulidpi 7335 archnqq 7434 nq0a0 7474 nq02m 7482 |
Copyright terms: Public domain | W3C validator |