ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlporlem GIF version

Theorem nninfwlporlem 7301
Description: Lemma for nninfwlpor 7302. The result. (Contributed by Jim Kingdon, 7-Dec-2024.)
Hypotheses
Ref Expression
nninfwlporlem.x (𝜑𝑋:ω⟶2o)
nninfwlporlem.y (𝜑𝑌:ω⟶2o)
nninfwlporlem.d 𝐷 = (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
nninfwlporlem.w (𝜑 → ω ∈ WOmni)
Assertion
Ref Expression
nninfwlporlem (𝜑DECID 𝑋 = 𝑌)
Distinct variable groups:   𝐷,𝑖   𝜑,𝑖   𝑖,𝑋   𝑖,𝑌

Proof of Theorem nninfwlporlem
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5598 . . . . . . 7 (𝑓 = 𝐷 → (𝑓𝑥) = (𝐷𝑥))
21eqeq1d 2216 . . . . . 6 (𝑓 = 𝐷 → ((𝑓𝑥) = 1o ↔ (𝐷𝑥) = 1o))
32ralbidv 2508 . . . . 5 (𝑓 = 𝐷 → (∀𝑥 ∈ ω (𝑓𝑥) = 1o ↔ ∀𝑥 ∈ ω (𝐷𝑥) = 1o))
43dcbid 840 . . . 4 (𝑓 = 𝐷 → (DECID𝑥 ∈ ω (𝑓𝑥) = 1oDECID𝑥 ∈ ω (𝐷𝑥) = 1o))
5 nninfwlporlem.w . . . . 5 (𝜑 → ω ∈ WOmni)
6 omex 4659 . . . . . 6 ω ∈ V
7 iswomnimap 7294 . . . . . 6 (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑥 ∈ ω (𝑓𝑥) = 1o))
86, 7ax-mp 5 . . . . 5 (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑥 ∈ ω (𝑓𝑥) = 1o)
95, 8sylib 122 . . . 4 (𝜑 → ∀𝑓 ∈ (2o𝑚 ω)DECID𝑥 ∈ ω (𝑓𝑥) = 1o)
10 1lt2o 6551 . . . . . . . 8 1o ∈ 2o
1110a1i 9 . . . . . . 7 ((𝜑𝑖 ∈ ω) → 1o ∈ 2o)
12 0lt2o 6550 . . . . . . . 8 ∅ ∈ 2o
1312a1i 9 . . . . . . 7 ((𝜑𝑖 ∈ ω) → ∅ ∈ 2o)
14 2ssom 6633 . . . . . . . . 9 2o ⊆ ω
15 nninfwlporlem.x . . . . . . . . . 10 (𝜑𝑋:ω⟶2o)
1615ffvelcdmda 5738 . . . . . . . . 9 ((𝜑𝑖 ∈ ω) → (𝑋𝑖) ∈ 2o)
1714, 16sselid 3199 . . . . . . . 8 ((𝜑𝑖 ∈ ω) → (𝑋𝑖) ∈ ω)
18 nninfwlporlem.y . . . . . . . . . 10 (𝜑𝑌:ω⟶2o)
1918ffvelcdmda 5738 . . . . . . . . 9 ((𝜑𝑖 ∈ ω) → (𝑌𝑖) ∈ 2o)
2014, 19sselid 3199 . . . . . . . 8 ((𝜑𝑖 ∈ ω) → (𝑌𝑖) ∈ ω)
21 nndceq 6608 . . . . . . . 8 (((𝑋𝑖) ∈ ω ∧ (𝑌𝑖) ∈ ω) → DECID (𝑋𝑖) = (𝑌𝑖))
2217, 20, 21syl2anc 411 . . . . . . 7 ((𝜑𝑖 ∈ ω) → DECID (𝑋𝑖) = (𝑌𝑖))
2311, 13, 22ifcldcd 3617 . . . . . 6 ((𝜑𝑖 ∈ ω) → if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ∈ 2o)
24 nninfwlporlem.d . . . . . 6 𝐷 = (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
2523, 24fmptd 5757 . . . . 5 (𝜑𝐷:ω⟶2o)
26 2onn 6630 . . . . . . 7 2o ∈ ω
2726elexi 2789 . . . . . 6 2o ∈ V
2827, 6elmap 6787 . . . . 5 (𝐷 ∈ (2o𝑚 ω) ↔ 𝐷:ω⟶2o)
2925, 28sylibr 134 . . . 4 (𝜑𝐷 ∈ (2o𝑚 ω))
304, 9, 29rspcdva 2889 . . 3 (𝜑DECID𝑥 ∈ ω (𝐷𝑥) = 1o)
3125ffnd 5446 . . . . 5 (𝜑𝐷 Fn ω)
32 eqidd 2208 . . . . 5 (𝑥 = 𝑖 → 1o = 1o)
33 1onn 6629 . . . . . 6 1o ∈ ω
3433a1i 9 . . . . 5 ((𝜑𝑥 ∈ ω) → 1o ∈ ω)
3533a1i 9 . . . . 5 ((𝜑𝑖 ∈ ω) → 1o ∈ ω)
3631, 32, 34, 35fnmptfvd 5707 . . . 4 (𝜑 → (𝐷 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑥 ∈ ω (𝐷𝑥) = 1o))
3736dcbid 840 . . 3 (𝜑 → (DECID 𝐷 = (𝑖 ∈ ω ↦ 1o) ↔ DECID𝑥 ∈ ω (𝐷𝑥) = 1o))
3830, 37mpbird 167 . 2 (𝜑DECID 𝐷 = (𝑖 ∈ ω ↦ 1o))
3915, 18, 24nninfwlporlemd 7300 . . 3 (𝜑 → (𝑋 = 𝑌𝐷 = (𝑖 ∈ ω ↦ 1o)))
4039dcbid 840 . 2 (𝜑 → (DECID 𝑋 = 𝑌DECID 𝐷 = (𝑖 ∈ ω ↦ 1o)))
4138, 40mpbird 167 1 (𝜑DECID 𝑋 = 𝑌)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2178  wral 2486  Vcvv 2776  c0 3468  ifcif 3579  cmpt 4121  ωcom 4656  wf 5286  cfv 5290  (class class class)co 5967  1oc1o 6518  2oc2o 6519  𝑚 cmap 6758  WOmnicwomni 7291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1o 6525  df-2o 6526  df-map 6760  df-womni 7292
This theorem is referenced by:  nninfwlpor  7302
  Copyright terms: Public domain W3C validator