Step | Hyp | Ref
| Expression |
1 | | fveq1 5495 |
. . . . . . 7
⊢ (𝑓 = 𝐷 → (𝑓‘𝑥) = (𝐷‘𝑥)) |
2 | 1 | eqeq1d 2179 |
. . . . . 6
⊢ (𝑓 = 𝐷 → ((𝑓‘𝑥) = 1o ↔ (𝐷‘𝑥) = 1o)) |
3 | 2 | ralbidv 2470 |
. . . . 5
⊢ (𝑓 = 𝐷 → (∀𝑥 ∈ ω (𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ ω (𝐷‘𝑥) = 1o)) |
4 | 3 | dcbid 833 |
. . . 4
⊢ (𝑓 = 𝐷 → (DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o ↔ DECID
∀𝑥 ∈ ω
(𝐷‘𝑥) = 1o)) |
5 | | nninfwlporlem.w |
. . . . 5
⊢ (𝜑 → ω ∈
WOmni) |
6 | | omex 4577 |
. . . . . 6
⊢ ω
∈ V |
7 | | iswomnimap 7142 |
. . . . . 6
⊢ (ω
∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o
↑𝑚 ω)DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o)) |
8 | 6, 7 | ax-mp 5 |
. . . . 5
⊢ (ω
∈ WOmni ↔ ∀𝑓 ∈ (2o
↑𝑚 ω)DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o) |
9 | 5, 8 | sylib 121 |
. . . 4
⊢ (𝜑 → ∀𝑓 ∈ (2o
↑𝑚 ω)DECID ∀𝑥 ∈ ω (𝑓‘𝑥) = 1o) |
10 | | 1lt2o 6421 |
. . . . . . . 8
⊢
1o ∈ 2o |
11 | 10 | a1i 9 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → 1o ∈
2o) |
12 | | 0lt2o 6420 |
. . . . . . . 8
⊢ ∅
∈ 2o |
13 | 12 | a1i 9 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → ∅ ∈
2o) |
14 | | 2ssom 6503 |
. . . . . . . . 9
⊢
2o ⊆ ω |
15 | | nninfwlporlem.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋:ω⟶2o) |
16 | 15 | ffvelrnda 5631 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝑋‘𝑖) ∈ 2o) |
17 | 14, 16 | sselid 3145 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝑋‘𝑖) ∈ ω) |
18 | | nninfwlporlem.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌:ω⟶2o) |
19 | 18 | ffvelrnda 5631 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝑌‘𝑖) ∈ 2o) |
20 | 14, 19 | sselid 3145 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝑌‘𝑖) ∈ ω) |
21 | | nndceq 6478 |
. . . . . . . 8
⊢ (((𝑋‘𝑖) ∈ ω ∧ (𝑌‘𝑖) ∈ ω) → DECID
(𝑋‘𝑖) = (𝑌‘𝑖)) |
22 | 17, 20, 21 | syl2anc 409 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → DECID
(𝑋‘𝑖) = (𝑌‘𝑖)) |
23 | 11, 13, 22 | ifcldcd 3561 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅) ∈
2o) |
24 | | nninfwlporlem.d |
. . . . . 6
⊢ 𝐷 = (𝑖 ∈ ω ↦ if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) |
25 | 23, 24 | fmptd 5650 |
. . . . 5
⊢ (𝜑 → 𝐷:ω⟶2o) |
26 | | 2onn 6500 |
. . . . . . 7
⊢
2o ∈ ω |
27 | 26 | elexi 2742 |
. . . . . 6
⊢
2o ∈ V |
28 | 27, 6 | elmap 6655 |
. . . . 5
⊢ (𝐷 ∈ (2o
↑𝑚 ω) ↔ 𝐷:ω⟶2o) |
29 | 25, 28 | sylibr 133 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ (2o
↑𝑚 ω)) |
30 | 4, 9, 29 | rspcdva 2839 |
. . 3
⊢ (𝜑 → DECID
∀𝑥 ∈ ω
(𝐷‘𝑥) = 1o) |
31 | 25 | ffnd 5348 |
. . . . 5
⊢ (𝜑 → 𝐷 Fn ω) |
32 | | eqidd 2171 |
. . . . 5
⊢ (𝑥 = 𝑖 → 1o =
1o) |
33 | | 1onn 6499 |
. . . . . 6
⊢
1o ∈ ω |
34 | 33 | a1i 9 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 1o ∈
ω) |
35 | 33 | a1i 9 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → 1o ∈
ω) |
36 | 31, 32, 34, 35 | fnmptfvd 5600 |
. . . 4
⊢ (𝜑 → (𝐷 = (𝑖 ∈ ω ↦ 1o) ↔
∀𝑥 ∈ ω
(𝐷‘𝑥) = 1o)) |
37 | 36 | dcbid 833 |
. . 3
⊢ (𝜑 → (DECID
𝐷 = (𝑖 ∈ ω ↦ 1o) ↔
DECID ∀𝑥 ∈ ω (𝐷‘𝑥) = 1o)) |
38 | 30, 37 | mpbird 166 |
. 2
⊢ (𝜑 → DECID 𝐷 = (𝑖 ∈ ω ↦
1o)) |
39 | 15, 18, 24 | nninfwlporlemd 7148 |
. . 3
⊢ (𝜑 → (𝑋 = 𝑌 ↔ 𝐷 = (𝑖 ∈ ω ↦
1o))) |
40 | 39 | dcbid 833 |
. 2
⊢ (𝜑 → (DECID
𝑋 = 𝑌 ↔ DECID 𝐷 = (𝑖 ∈ ω ↦
1o))) |
41 | 38, 40 | mpbird 166 |
1
⊢ (𝜑 → DECID 𝑋 = 𝑌) |