ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlporlem GIF version

Theorem nninfwlporlem 7234
Description: Lemma for nninfwlpor 7235. The result. (Contributed by Jim Kingdon, 7-Dec-2024.)
Hypotheses
Ref Expression
nninfwlporlem.x (𝜑𝑋:ω⟶2o)
nninfwlporlem.y (𝜑𝑌:ω⟶2o)
nninfwlporlem.d 𝐷 = (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
nninfwlporlem.w (𝜑 → ω ∈ WOmni)
Assertion
Ref Expression
nninfwlporlem (𝜑DECID 𝑋 = 𝑌)
Distinct variable groups:   𝐷,𝑖   𝜑,𝑖   𝑖,𝑋   𝑖,𝑌

Proof of Theorem nninfwlporlem
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5554 . . . . . . 7 (𝑓 = 𝐷 → (𝑓𝑥) = (𝐷𝑥))
21eqeq1d 2202 . . . . . 6 (𝑓 = 𝐷 → ((𝑓𝑥) = 1o ↔ (𝐷𝑥) = 1o))
32ralbidv 2494 . . . . 5 (𝑓 = 𝐷 → (∀𝑥 ∈ ω (𝑓𝑥) = 1o ↔ ∀𝑥 ∈ ω (𝐷𝑥) = 1o))
43dcbid 839 . . . 4 (𝑓 = 𝐷 → (DECID𝑥 ∈ ω (𝑓𝑥) = 1oDECID𝑥 ∈ ω (𝐷𝑥) = 1o))
5 nninfwlporlem.w . . . . 5 (𝜑 → ω ∈ WOmni)
6 omex 4626 . . . . . 6 ω ∈ V
7 iswomnimap 7227 . . . . . 6 (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑥 ∈ ω (𝑓𝑥) = 1o))
86, 7ax-mp 5 . . . . 5 (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑥 ∈ ω (𝑓𝑥) = 1o)
95, 8sylib 122 . . . 4 (𝜑 → ∀𝑓 ∈ (2o𝑚 ω)DECID𝑥 ∈ ω (𝑓𝑥) = 1o)
10 1lt2o 6497 . . . . . . . 8 1o ∈ 2o
1110a1i 9 . . . . . . 7 ((𝜑𝑖 ∈ ω) → 1o ∈ 2o)
12 0lt2o 6496 . . . . . . . 8 ∅ ∈ 2o
1312a1i 9 . . . . . . 7 ((𝜑𝑖 ∈ ω) → ∅ ∈ 2o)
14 2ssom 6579 . . . . . . . . 9 2o ⊆ ω
15 nninfwlporlem.x . . . . . . . . . 10 (𝜑𝑋:ω⟶2o)
1615ffvelcdmda 5694 . . . . . . . . 9 ((𝜑𝑖 ∈ ω) → (𝑋𝑖) ∈ 2o)
1714, 16sselid 3178 . . . . . . . 8 ((𝜑𝑖 ∈ ω) → (𝑋𝑖) ∈ ω)
18 nninfwlporlem.y . . . . . . . . . 10 (𝜑𝑌:ω⟶2o)
1918ffvelcdmda 5694 . . . . . . . . 9 ((𝜑𝑖 ∈ ω) → (𝑌𝑖) ∈ 2o)
2014, 19sselid 3178 . . . . . . . 8 ((𝜑𝑖 ∈ ω) → (𝑌𝑖) ∈ ω)
21 nndceq 6554 . . . . . . . 8 (((𝑋𝑖) ∈ ω ∧ (𝑌𝑖) ∈ ω) → DECID (𝑋𝑖) = (𝑌𝑖))
2217, 20, 21syl2anc 411 . . . . . . 7 ((𝜑𝑖 ∈ ω) → DECID (𝑋𝑖) = (𝑌𝑖))
2311, 13, 22ifcldcd 3594 . . . . . 6 ((𝜑𝑖 ∈ ω) → if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ∈ 2o)
24 nninfwlporlem.d . . . . . 6 𝐷 = (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
2523, 24fmptd 5713 . . . . 5 (𝜑𝐷:ω⟶2o)
26 2onn 6576 . . . . . . 7 2o ∈ ω
2726elexi 2772 . . . . . 6 2o ∈ V
2827, 6elmap 6733 . . . . 5 (𝐷 ∈ (2o𝑚 ω) ↔ 𝐷:ω⟶2o)
2925, 28sylibr 134 . . . 4 (𝜑𝐷 ∈ (2o𝑚 ω))
304, 9, 29rspcdva 2870 . . 3 (𝜑DECID𝑥 ∈ ω (𝐷𝑥) = 1o)
3125ffnd 5405 . . . . 5 (𝜑𝐷 Fn ω)
32 eqidd 2194 . . . . 5 (𝑥 = 𝑖 → 1o = 1o)
33 1onn 6575 . . . . . 6 1o ∈ ω
3433a1i 9 . . . . 5 ((𝜑𝑥 ∈ ω) → 1o ∈ ω)
3533a1i 9 . . . . 5 ((𝜑𝑖 ∈ ω) → 1o ∈ ω)
3631, 32, 34, 35fnmptfvd 5663 . . . 4 (𝜑 → (𝐷 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑥 ∈ ω (𝐷𝑥) = 1o))
3736dcbid 839 . . 3 (𝜑 → (DECID 𝐷 = (𝑖 ∈ ω ↦ 1o) ↔ DECID𝑥 ∈ ω (𝐷𝑥) = 1o))
3830, 37mpbird 167 . 2 (𝜑DECID 𝐷 = (𝑖 ∈ ω ↦ 1o))
3915, 18, 24nninfwlporlemd 7233 . . 3 (𝜑 → (𝑋 = 𝑌𝐷 = (𝑖 ∈ ω ↦ 1o)))
4039dcbid 839 . 2 (𝜑 → (DECID 𝑋 = 𝑌DECID 𝐷 = (𝑖 ∈ ω ↦ 1o)))
4138, 40mpbird 167 1 (𝜑DECID 𝑋 = 𝑌)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  c0 3447  ifcif 3558  cmpt 4091  ωcom 4623  wf 5251  cfv 5255  (class class class)co 5919  1oc1o 6464  2oc2o 6465  𝑚 cmap 6704  WOmnicwomni 7224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1o 6471  df-2o 6472  df-map 6706  df-womni 7225
This theorem is referenced by:  nninfwlpor  7235
  Copyright terms: Public domain W3C validator