ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2shfti GIF version

Theorem 2shfti 11013
Description: Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
2shfti ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵)))

Proof of Theorem 2shfti
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . . . . . 9 𝐹 ∈ V
21shftfval 11003 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)})
32breqd 4045 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ (𝑥𝐵){⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)}𝑦))
43ad2antrr 488 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ (𝑥𝐵){⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)}𝑦))
5 simpr 110 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
6 simplr 528 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
75, 6subcld 8354 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → (𝑥𝐵) ∈ ℂ)
8 vex 2766 . . . . . . 7 𝑦 ∈ V
9 eleq1 2259 . . . . . . . . 9 (𝑧 = (𝑥𝐵) → (𝑧 ∈ ℂ ↔ (𝑥𝐵) ∈ ℂ))
10 oveq1 5932 . . . . . . . . . 10 (𝑧 = (𝑥𝐵) → (𝑧𝐴) = ((𝑥𝐵) − 𝐴))
1110breq1d 4044 . . . . . . . . 9 (𝑧 = (𝑥𝐵) → ((𝑧𝐴)𝐹𝑤 ↔ ((𝑥𝐵) − 𝐴)𝐹𝑤))
129, 11anbi12d 473 . . . . . . . 8 (𝑧 = (𝑥𝐵) → ((𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤) ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑤)))
13 breq2 4038 . . . . . . . . 9 (𝑤 = 𝑦 → (((𝑥𝐵) − 𝐴)𝐹𝑤 ↔ ((𝑥𝐵) − 𝐴)𝐹𝑦))
1413anbi2d 464 . . . . . . . 8 (𝑤 = 𝑦 → (((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑤) ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
15 eqid 2196 . . . . . . . 8 {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)} = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)}
1612, 14, 15brabg 4304 . . . . . . 7 (((𝑥𝐵) ∈ ℂ ∧ 𝑦 ∈ V) → ((𝑥𝐵){⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)}𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
177, 8, 16sylancl 413 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵){⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)}𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
184, 17bitrd 188 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
19 subcl 8242 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥𝐵) ∈ ℂ)
2019biantrurd 305 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
2120ancoms 268 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
2221adantll 476 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
23 sub32 8277 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐴) − 𝐵) = ((𝑥𝐵) − 𝐴))
24 subsub4 8276 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐴) − 𝐵) = (𝑥 − (𝐴 + 𝐵)))
2523, 24eqtr3d 2231 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵)))
26253expb 1206 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝑥𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵)))
2726ancoms 268 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵)))
2827breq1d 4044 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ (𝑥 − (𝐴 + 𝐵))𝐹𝑦))
2918, 22, 283bitr2d 216 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ (𝑥 − (𝐴 + 𝐵))𝐹𝑦))
3029pm5.32da 452 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)))
3130opabbidv 4100 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)})
32 ovshftex 11001 . . . . 5 ((𝐹 ∈ V ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V)
331, 32mpan 424 . . . 4 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) ∈ V)
34 shftfvalg 11000 . . . 4 ((𝐵 ∈ ℂ ∧ (𝐹 shift 𝐴) ∈ V) → ((𝐹 shift 𝐴) shift 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦)})
3533, 34sylan2 286 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦)})
3635ancoms 268 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦)})
37 addcl 8021 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
381shftfval 11003 . . 3 ((𝐴 + 𝐵) ∈ ℂ → (𝐹 shift (𝐴 + 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)})
3937, 38syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹 shift (𝐴 + 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)})
4031, 36, 393eqtr4d 2239 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  Vcvv 2763   class class class wbr 4034  {copab 4094  (class class class)co 5925  cc 7894   + caddc 7899  cmin 8214   shift cshi 10996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216  df-shft 10997
This theorem is referenced by:  shftcan1  11016
  Copyright terms: Public domain W3C validator