| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lesub2 | GIF version | ||
| Description: Subtraction of both sides of 'less than or equal to'. (Contributed by NM, 29-Sep-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| lesub2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐶 − 𝐵) ≤ (𝐶 − 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leadd2 8458 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) | |
| 2 | simp3 1001 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
| 3 | simp1 999 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 4 | 2, 3 | readdcld 8056 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐴) ∈ ℝ) |
| 5 | simp2 1000 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ) | |
| 6 | lesubadd 8461 | . . . 4 ⊢ (((𝐶 + 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐶 + 𝐴) − 𝐵) ≤ 𝐶 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) | |
| 7 | 4, 5, 2, 6 | syl3anc 1249 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐶 + 𝐴) − 𝐵) ≤ 𝐶 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) |
| 8 | 2 | recnd 8055 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) |
| 9 | 3 | recnd 8055 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ) |
| 10 | 5 | recnd 8055 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) |
| 11 | 8, 9, 10 | addsubd 8358 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) − 𝐵) = ((𝐶 − 𝐵) + 𝐴)) |
| 12 | 11 | breq1d 4043 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐶 + 𝐴) − 𝐵) ≤ 𝐶 ↔ ((𝐶 − 𝐵) + 𝐴) ≤ 𝐶)) |
| 13 | 1, 7, 12 | 3bitr2d 216 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ((𝐶 − 𝐵) + 𝐴) ≤ 𝐶)) |
| 14 | 2, 5 | resubcld 8407 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
| 15 | leaddsub 8465 | . . 3 ⊢ (((𝐶 − 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐶 − 𝐵) + 𝐴) ≤ 𝐶 ↔ (𝐶 − 𝐵) ≤ (𝐶 − 𝐴))) | |
| 16 | 14, 3, 2, 15 | syl3anc 1249 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐶 − 𝐵) + 𝐴) ≤ 𝐶 ↔ (𝐶 − 𝐵) ≤ (𝐶 − 𝐴))) |
| 17 | 13, 16 | bitrd 188 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐶 − 𝐵) ≤ (𝐶 − 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 ∈ wcel 2167 class class class wbr 4033 (class class class)co 5922 ℝcr 7878 + caddc 7882 ≤ cle 8062 − cmin 8197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 |
| This theorem is referenced by: le2sub 8488 leneg 8492 lesub0 8506 lesub2d 8580 gausslemma2dlem1a 15299 |
| Copyright terms: Public domain | W3C validator |