ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlemininf GIF version

Theorem xrlemininf 11052
Description: Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 4-May-2023.)
Assertion
Ref Expression
xrlemininf ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ (𝐴𝐵𝐴𝐶)))

Proof of Theorem xrlemininf
StepHypRef Expression
1 xrminmax 11046 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → inf({𝐵, 𝐶}, ℝ*, < ) = -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ))
21breq2d 3941 . . 3 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ 𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
323adant1 999 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ 𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
4 xnegcl 9627 . . . . . 6 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
543ad2ant2 1003 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐵 ∈ ℝ*)
6 xnegcl 9627 . . . . . 6 (𝐶 ∈ ℝ* → -𝑒𝐶 ∈ ℝ*)
763ad2ant3 1004 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐶 ∈ ℝ*)
8 xrmaxcl 11033 . . . . 5 ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ*) → sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*)
95, 7, 8syl2anc 408 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*)
10 xnegcl 9627 . . . . 5 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
11103ad2ant1 1002 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐴 ∈ ℝ*)
12 xleneg 9632 . . . 4 ((sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴 ↔ -𝑒-𝑒𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
139, 11, 12syl2anc 408 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴 ↔ -𝑒-𝑒𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
14 xnegneg 9628 . . . . 5 (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)
15143ad2ant1 1002 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒-𝑒𝐴 = 𝐴)
1615breq1d 3939 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒-𝑒𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ↔ 𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
1713, 16bitrd 187 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
18 xrmaxlesup 11040 . . . 4 ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴 ↔ (-𝑒𝐵 ≤ -𝑒𝐴 ∧ -𝑒𝐶 ≤ -𝑒𝐴)))
195, 7, 11, 18syl3anc 1216 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴 ↔ (-𝑒𝐵 ≤ -𝑒𝐴 ∧ -𝑒𝐶 ≤ -𝑒𝐴)))
20 xleneg 9632 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴))
21203adant3 1001 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴))
22 xleneg 9632 . . . . 5 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐶 ↔ -𝑒𝐶 ≤ -𝑒𝐴))
23223adant2 1000 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐶 ↔ -𝑒𝐶 ≤ -𝑒𝐴))
2421, 23anbi12d 464 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐴𝐶) ↔ (-𝑒𝐵 ≤ -𝑒𝐴 ∧ -𝑒𝐶 ≤ -𝑒𝐴)))
2519, 24bitr4d 190 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴 ↔ (𝐴𝐵𝐴𝐶)))
263, 17, 253bitr2d 215 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ (𝐴𝐵𝐴𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  {cpr 3528   class class class wbr 3929  supcsup 6869  infcinf 6870  *cxr 7811   < clt 7812  cle 7813  -𝑒cxne 9568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-inf 6872  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-n0 8990  df-z 9067  df-uz 9339  df-rp 9454  df-xneg 9571  df-seqfrec 10231  df-exp 10305  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783
This theorem is referenced by:  xrbdtri  11057  bdxmet  12684  bdmet  12685
  Copyright terms: Public domain W3C validator