ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlemininf GIF version

Theorem xrlemininf 11212
Description: Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 4-May-2023.)
Assertion
Ref Expression
xrlemininf ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ (𝐴𝐵𝐴𝐶)))

Proof of Theorem xrlemininf
StepHypRef Expression
1 xrminmax 11206 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → inf({𝐵, 𝐶}, ℝ*, < ) = -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ))
21breq2d 3994 . . 3 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ 𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
323adant1 1005 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ 𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
4 xnegcl 9768 . . . . . 6 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
543ad2ant2 1009 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐵 ∈ ℝ*)
6 xnegcl 9768 . . . . . 6 (𝐶 ∈ ℝ* → -𝑒𝐶 ∈ ℝ*)
763ad2ant3 1010 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐶 ∈ ℝ*)
8 xrmaxcl 11193 . . . . 5 ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ*) → sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*)
95, 7, 8syl2anc 409 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*)
10 xnegcl 9768 . . . . 5 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
11103ad2ant1 1008 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐴 ∈ ℝ*)
12 xleneg 9773 . . . 4 ((sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴 ↔ -𝑒-𝑒𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
139, 11, 12syl2anc 409 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴 ↔ -𝑒-𝑒𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
14 xnegneg 9769 . . . . 5 (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)
15143ad2ant1 1008 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒-𝑒𝐴 = 𝐴)
1615breq1d 3992 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒-𝑒𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ↔ 𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
1713, 16bitrd 187 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
18 xrmaxlesup 11200 . . . 4 ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴 ↔ (-𝑒𝐵 ≤ -𝑒𝐴 ∧ -𝑒𝐶 ≤ -𝑒𝐴)))
195, 7, 11, 18syl3anc 1228 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴 ↔ (-𝑒𝐵 ≤ -𝑒𝐴 ∧ -𝑒𝐶 ≤ -𝑒𝐴)))
20 xleneg 9773 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴))
21203adant3 1007 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴))
22 xleneg 9773 . . . . 5 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐶 ↔ -𝑒𝐶 ≤ -𝑒𝐴))
23223adant2 1006 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐶 ↔ -𝑒𝐶 ≤ -𝑒𝐴))
2421, 23anbi12d 465 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐴𝐶) ↔ (-𝑒𝐵 ≤ -𝑒𝐴 ∧ -𝑒𝐶 ≤ -𝑒𝐴)))
2519, 24bitr4d 190 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴 ↔ (𝐴𝐵𝐴𝐶)))
263, 17, 253bitr2d 215 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ (𝐴𝐵𝐴𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  {cpr 3577   class class class wbr 3982  supcsup 6947  infcinf 6948  *cxr 7932   < clt 7933  cle 7934  -𝑒cxne 9705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-xneg 9708  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941
This theorem is referenced by:  xrbdtri  11217  bdxmet  13141  bdmet  13142
  Copyright terms: Public domain W3C validator