| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrlemininf | GIF version | ||
| Description: Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 4-May-2023.) |
| Ref | Expression |
|---|---|
| xrlemininf | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrminmax 11742 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → inf({𝐵, 𝐶}, ℝ*, < ) = -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )) | |
| 2 | 1 | breq2d 4074 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ 𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ))) |
| 3 | 2 | 3adant1 1020 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ 𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ))) |
| 4 | xnegcl 9996 | . . . . . 6 ⊢ (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*) | |
| 5 | 4 | 3ad2ant2 1024 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → -𝑒𝐵 ∈ ℝ*) |
| 6 | xnegcl 9996 | . . . . . 6 ⊢ (𝐶 ∈ ℝ* → -𝑒𝐶 ∈ ℝ*) | |
| 7 | 6 | 3ad2ant3 1025 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → -𝑒𝐶 ∈ ℝ*) |
| 8 | xrmaxcl 11729 | . . . . 5 ⊢ ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ*) → sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*) | |
| 9 | 5, 7, 8 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*) |
| 10 | xnegcl 9996 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) | |
| 11 | 10 | 3ad2ant1 1023 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → -𝑒𝐴 ∈ ℝ*) |
| 12 | xleneg 10001 | . . . 4 ⊢ ((sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴 ↔ -𝑒-𝑒𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ))) | |
| 13 | 9, 11, 12 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴 ↔ -𝑒-𝑒𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ))) |
| 14 | xnegneg 9997 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) | |
| 15 | 14 | 3ad2ant1 1023 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → -𝑒-𝑒𝐴 = 𝐴) |
| 16 | 15 | breq1d 4072 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (-𝑒-𝑒𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ↔ 𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ))) |
| 17 | 13, 16 | bitrd 188 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴 ↔ 𝐴 ≤ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ))) |
| 18 | xrmaxlesup 11736 | . . . 4 ⊢ ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴 ↔ (-𝑒𝐵 ≤ -𝑒𝐴 ∧ -𝑒𝐶 ≤ -𝑒𝐴))) | |
| 19 | 5, 7, 11, 18 | syl3anc 1252 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴 ↔ (-𝑒𝐵 ≤ -𝑒𝐴 ∧ -𝑒𝐶 ≤ -𝑒𝐴))) |
| 20 | xleneg 10001 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴)) | |
| 21 | 20 | 3adant3 1022 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴)) |
| 22 | xleneg 10001 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ 𝐶 ↔ -𝑒𝐶 ≤ -𝑒𝐴)) | |
| 23 | 22 | 3adant2 1021 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ 𝐶 ↔ -𝑒𝐶 ≤ -𝑒𝐴)) |
| 24 | 21, 23 | anbi12d 473 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶) ↔ (-𝑒𝐵 ≤ -𝑒𝐴 ∧ -𝑒𝐶 ≤ -𝑒𝐴))) |
| 25 | 19, 24 | bitr4d 191 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ≤ -𝑒𝐴 ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) |
| 26 | 3, 17, 25 | 3bitr2d 216 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 {cpr 3647 class class class wbr 4062 supcsup 7117 infcinf 7118 ℝ*cxr 8148 < clt 8149 ≤ cle 8150 -𝑒cxne 9933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-sup 7119 df-inf 7120 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-rp 9818 df-xneg 9936 df-seqfrec 10637 df-exp 10728 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 |
| This theorem is referenced by: xrbdtri 11753 bdxmet 15140 bdmet 15141 |
| Copyright terms: Public domain | W3C validator |