Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpsubeq0 | GIF version |
Description: If the difference between two group elements is zero, they are equal. (subeq0 8154 analog.) (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
grpsubid.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubid.o | ⊢ 0 = (0g‘𝐺) |
grpsubid.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubeq0 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2173 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2173 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
4 | grpsubid.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
5 | 1, 2, 3, 4 | grpsubval 12776 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
6 | 5 | 3adant1 1013 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
7 | 6 | eqeq1d 2182 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) = 0 ↔ (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) = 0 )) |
8 | simp1 995 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ Grp) | |
9 | 1, 3 | grpinvcl 12778 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
10 | 9 | 3adant2 1014 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
11 | simp2 996 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
12 | grpsubid.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
13 | 1, 2, 12, 3 | grpinvid2 12782 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑋 ↔ (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) = 0 )) |
14 | 8, 10, 11, 13 | syl3anc 1236 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑋 ↔ (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) = 0 )) |
15 | 1, 3 | grpinvinv 12793 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑌) |
16 | 15 | 3adant2 1014 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑌) |
17 | 16 | eqeq1d 2182 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑋 ↔ 𝑌 = 𝑋)) |
18 | eqcom 2175 | . . 3 ⊢ (𝑌 = 𝑋 ↔ 𝑋 = 𝑌) | |
19 | 17, 18 | bitrdi 197 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑋 ↔ 𝑋 = 𝑌)) |
20 | 7, 14, 19 | 3bitr2d 217 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 976 = wceq 1351 ∈ wcel 2144 ‘cfv 5205 (class class class)co 5862 Basecbs 12425 +gcplusg 12489 0gc0g 12623 Grpcgrp 12735 invgcminusg 12736 -gcsg 12737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 612 ax-in2 613 ax-io 707 ax-5 1443 ax-7 1444 ax-gen 1445 ax-ie1 1489 ax-ie2 1490 ax-8 1500 ax-10 1501 ax-11 1502 ax-i12 1503 ax-bndl 1505 ax-4 1506 ax-17 1522 ax-i9 1526 ax-ial 1530 ax-i5r 1531 ax-13 2146 ax-14 2147 ax-ext 2155 ax-coll 4110 ax-sep 4113 ax-pow 4166 ax-pr 4200 ax-un 4424 ax-setind 4527 ax-cnex 7874 ax-resscn 7875 ax-1re 7877 ax-addrcl 7880 |
This theorem depends on definitions: df-bi 117 df-3an 978 df-tru 1354 df-fal 1357 df-nf 1457 df-sb 1759 df-eu 2025 df-mo 2026 df-clab 2160 df-cleq 2166 df-clel 2169 df-nfc 2304 df-ne 2344 df-ral 2456 df-rex 2457 df-reu 2458 df-rmo 2459 df-rab 2460 df-v 2735 df-sbc 2959 df-csb 3053 df-dif 3126 df-un 3128 df-in 3130 df-ss 3137 df-pw 3571 df-sn 3592 df-pr 3593 df-op 3595 df-uni 3803 df-int 3838 df-iun 3881 df-br 3996 df-opab 4057 df-mpt 4058 df-id 4284 df-xp 4623 df-rel 4624 df-cnv 4625 df-co 4626 df-dm 4627 df-rn 4628 df-res 4629 df-ima 4630 df-iota 5167 df-fun 5207 df-fn 5208 df-f 5209 df-f1 5210 df-fo 5211 df-f1o 5212 df-fv 5213 df-riota 5818 df-ov 5865 df-oprab 5866 df-mpo 5867 df-1st 6128 df-2nd 6129 df-inn 8888 df-2 8946 df-ndx 12428 df-slot 12429 df-base 12431 df-plusg 12502 df-0g 12625 df-mgm 12637 df-sgrp 12670 df-mnd 12680 df-grp 12738 df-minusg 12739 df-sbg 12740 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |