ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubeq0 GIF version

Theorem grpsubeq0 13605
Description: If the difference between two group elements is zero, they are equal. (subeq0 8360 analog.) (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpsubid.b 𝐵 = (Base‘𝐺)
grpsubid.o 0 = (0g𝐺)
grpsubid.m = (-g𝐺)
Assertion
Ref Expression
grpsubeq0 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) = 0𝑋 = 𝑌))

Proof of Theorem grpsubeq0
StepHypRef Expression
1 grpsubid.b . . . . 5 𝐵 = (Base‘𝐺)
2 eqid 2229 . . . . 5 (+g𝐺) = (+g𝐺)
3 eqid 2229 . . . . 5 (invg𝐺) = (invg𝐺)
4 grpsubid.m . . . . 5 = (-g𝐺)
51, 2, 3, 4grpsubval 13565 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
653adant1 1039 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
76eqeq1d 2238 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) = 0 ↔ (𝑋(+g𝐺)((invg𝐺)‘𝑌)) = 0 ))
8 simp1 1021 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
91, 3grpinvcl 13567 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐵)
1093adant2 1040 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐵)
11 simp2 1022 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
12 grpsubid.o . . . 4 0 = (0g𝐺)
131, 2, 12, 3grpinvid2 13572 . . 3 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑌) ∈ 𝐵𝑋𝐵) → (((invg𝐺)‘((invg𝐺)‘𝑌)) = 𝑋 ↔ (𝑋(+g𝐺)((invg𝐺)‘𝑌)) = 0 ))
148, 10, 11, 13syl3anc 1271 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (((invg𝐺)‘((invg𝐺)‘𝑌)) = 𝑋 ↔ (𝑋(+g𝐺)((invg𝐺)‘𝑌)) = 0 ))
151, 3grpinvinv 13586 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘((invg𝐺)‘𝑌)) = 𝑌)
16153adant2 1040 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((invg𝐺)‘((invg𝐺)‘𝑌)) = 𝑌)
1716eqeq1d 2238 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (((invg𝐺)‘((invg𝐺)‘𝑌)) = 𝑋𝑌 = 𝑋))
18 eqcom 2231 . . 3 (𝑌 = 𝑋𝑋 = 𝑌)
1917, 18bitrdi 196 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (((invg𝐺)‘((invg𝐺)‘𝑌)) = 𝑋𝑋 = 𝑌))
207, 14, 193bitr2d 216 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) = 0𝑋 = 𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 1002   = wceq 1395  wcel 2200  cfv 5314  (class class class)co 5994  Basecbs 13018  +gcplusg 13096  0gc0g 13275  Grpcgrp 13519  invgcminusg 13520  -gcsg 13521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523  df-sbg 13524
This theorem is referenced by:  ghmeqker  13794  ghmf1  13796  kerf1ghm  13797  lmodsubeq0  14295
  Copyright terms: Public domain W3C validator