![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltsub2 | GIF version |
Description: Subtraction of both sides of 'less than'. (Contributed by NM, 29-Sep-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltsub2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 − 𝐵) < (𝐶 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltadd2 7994 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) | |
2 | simp3 948 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
3 | simp1 946 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ) | |
4 | 2, 3 | readdcld 7614 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐴) ∈ ℝ) |
5 | simp2 947 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ) | |
6 | ltsubadd 8007 | . . . 4 ⊢ (((𝐶 + 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐶 + 𝐴) − 𝐵) < 𝐶 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) | |
7 | 4, 5, 2, 6 | syl3anc 1181 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐶 + 𝐴) − 𝐵) < 𝐶 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
8 | 2 | recnd 7613 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) |
9 | 3 | recnd 7613 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ) |
10 | 5 | recnd 7613 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) |
11 | 8, 9, 10 | addsubd 7911 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) − 𝐵) = ((𝐶 − 𝐵) + 𝐴)) |
12 | 11 | breq1d 3877 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐶 + 𝐴) − 𝐵) < 𝐶 ↔ ((𝐶 − 𝐵) + 𝐴) < 𝐶)) |
13 | 1, 7, 12 | 3bitr2d 215 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐶 − 𝐵) + 𝐴) < 𝐶)) |
14 | 2, 5 | resubcld 7956 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
15 | ltaddsub 8011 | . . 3 ⊢ (((𝐶 − 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐶 − 𝐵) + 𝐴) < 𝐶 ↔ (𝐶 − 𝐵) < (𝐶 − 𝐴))) | |
16 | 14, 3, 2, 15 | syl3anc 1181 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐶 − 𝐵) + 𝐴) < 𝐶 ↔ (𝐶 − 𝐵) < (𝐶 − 𝐴))) |
17 | 13, 16 | bitrd 187 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 − 𝐵) < (𝐶 − 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 927 ∈ wcel 1445 class class class wbr 3867 (class class class)co 5690 ℝcr 7446 + caddc 7450 < clt 7619 − cmin 7750 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-addcom 7542 ax-addass 7544 ax-distr 7546 ax-i2m1 7547 ax-0id 7550 ax-rnegex 7551 ax-cnre 7553 ax-pre-ltadd 7558 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-pnf 7621 df-mnf 7622 df-ltxr 7624 df-sub 7752 df-neg 7753 |
This theorem is referenced by: lt2sub 8035 ltneg 8037 ltsub2d 8129 ltm1 8404 |
Copyright terms: Public domain | W3C validator |