Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prsrlt | GIF version |
Description: Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.) |
Ref | Expression |
---|---|
prsrlt | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ [〈(𝐴 +P 1P), 1P〉] ~R <R [〈(𝐵 +P 1P), 1P〉] ~R )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pr 7516 | . . . . 5 ⊢ 1P ∈ P | |
2 | 1 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 1P ∈ P) |
3 | simpr 109 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 𝐵 ∈ P) | |
4 | addassprg 7541 | . . . 4 ⊢ ((1P ∈ P ∧ 𝐵 ∈ P ∧ 1P ∈ P) → ((1P +P 𝐵) +P 1P) = (1P +P (𝐵 +P 1P))) | |
5 | 2, 3, 2, 4 | syl3anc 1233 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((1P +P 𝐵) +P 1P) = (1P +P (𝐵 +P 1P))) |
6 | 5 | breq2d 4001 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P) ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P)))) |
7 | simpl 108 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 𝐴 ∈ P) | |
8 | ltaprg 7581 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 1P ∈ P) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵))) | |
9 | 7, 3, 2, 8 | syl3anc 1233 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵))) |
10 | addcomprg 7540 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → (𝐴 +P 1P) = (1P +P 𝐴)) | |
11 | 7, 2, 10 | syl2anc 409 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 1P) = (1P +P 𝐴)) |
12 | 11 | breq1d 3999 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 1P)<P (1P +P 𝐵) ↔ (1P +P 𝐴)<P (1P +P 𝐵))) |
13 | ltaprg 7581 | . . . . 5 ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P ∧ ℎ ∈ P) → (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P (ℎ +P 𝑔))) | |
14 | 13 | adantl 275 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P ∧ ℎ ∈ P)) → (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P (ℎ +P 𝑔))) |
15 | addclpr 7499 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → (𝐴 +P 1P) ∈ P) | |
16 | 7, 2, 15 | syl2anc 409 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 1P) ∈ P) |
17 | addclpr 7499 | . . . . 5 ⊢ ((1P ∈ P ∧ 𝐵 ∈ P) → (1P +P 𝐵) ∈ P) | |
18 | 2, 3, 17 | syl2anc 409 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (1P +P 𝐵) ∈ P) |
19 | addcomprg 7540 | . . . . 5 ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓)) | |
20 | 19 | adantl 275 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓)) |
21 | 14, 16, 18, 2, 20 | caovord2d 6022 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 1P)<P (1P +P 𝐵) ↔ ((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P))) |
22 | 9, 12, 21 | 3bitr2d 215 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P))) |
23 | addclpr 7499 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 1P ∈ P) → (𝐵 +P 1P) ∈ P) | |
24 | 3, 2, 23 | syl2anc 409 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐵 +P 1P) ∈ P) |
25 | ltsrprg 7709 | . . 3 ⊢ ((((𝐴 +P 1P) ∈ P ∧ 1P ∈ P) ∧ ((𝐵 +P 1P) ∈ P ∧ 1P ∈ P)) → ([〈(𝐴 +P 1P), 1P〉] ~R <R [〈(𝐵 +P 1P), 1P〉] ~R ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P)))) | |
26 | 16, 2, 24, 2, 25 | syl22anc 1234 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ([〈(𝐴 +P 1P), 1P〉] ~R <R [〈(𝐵 +P 1P), 1P〉] ~R ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P)))) |
27 | 6, 22, 26 | 3bitr4d 219 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ [〈(𝐴 +P 1P), 1P〉] ~R <R [〈(𝐵 +P 1P), 1P〉] ~R )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 〈cop 3586 class class class wbr 3989 (class class class)co 5853 [cec 6511 Pcnp 7253 1Pc1p 7254 +P cpp 7255 <P cltp 7257 ~R cer 7258 <R cltr 7265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-i1p 7429 df-iplp 7430 df-iltp 7432 df-enr 7688 df-nr 7689 df-ltr 7692 |
This theorem is referenced by: caucvgsrlemcau 7755 caucvgsrlembound 7756 caucvgsrlemgt1 7757 ltrennb 7816 |
Copyright terms: Public domain | W3C validator |