ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrlt GIF version

Theorem prsrlt 7970
Description: Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsrlt ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ [⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ))

Proof of Theorem prsrlt
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pr 7737 . . . . 5 1PP
21a1i 9 . . . 4 ((𝐴P𝐵P) → 1PP)
3 simpr 110 . . . 4 ((𝐴P𝐵P) → 𝐵P)
4 addassprg 7762 . . . 4 ((1PP𝐵P ∧ 1PP) → ((1P +P 𝐵) +P 1P) = (1P +P (𝐵 +P 1P)))
52, 3, 2, 4syl3anc 1271 . . 3 ((𝐴P𝐵P) → ((1P +P 𝐵) +P 1P) = (1P +P (𝐵 +P 1P)))
65breq2d 4094 . 2 ((𝐴P𝐵P) → (((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P) ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P))))
7 simpl 109 . . . 4 ((𝐴P𝐵P) → 𝐴P)
8 ltaprg 7802 . . . 4 ((𝐴P𝐵P ∧ 1PP) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵)))
97, 3, 2, 8syl3anc 1271 . . 3 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵)))
10 addcomprg 7761 . . . . 5 ((𝐴P ∧ 1PP) → (𝐴 +P 1P) = (1P +P 𝐴))
117, 2, 10syl2anc 411 . . . 4 ((𝐴P𝐵P) → (𝐴 +P 1P) = (1P +P 𝐴))
1211breq1d 4092 . . 3 ((𝐴P𝐵P) → ((𝐴 +P 1P)<P (1P +P 𝐵) ↔ (1P +P 𝐴)<P (1P +P 𝐵)))
13 ltaprg 7802 . . . . 5 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
1413adantl 277 . . . 4 (((𝐴P𝐵P) ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
15 addclpr 7720 . . . . 5 ((𝐴P ∧ 1PP) → (𝐴 +P 1P) ∈ P)
167, 2, 15syl2anc 411 . . . 4 ((𝐴P𝐵P) → (𝐴 +P 1P) ∈ P)
17 addclpr 7720 . . . . 5 ((1PP𝐵P) → (1P +P 𝐵) ∈ P)
182, 3, 17syl2anc 411 . . . 4 ((𝐴P𝐵P) → (1P +P 𝐵) ∈ P)
19 addcomprg 7761 . . . . 5 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
2019adantl 277 . . . 4 (((𝐴P𝐵P) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
2114, 16, 18, 2, 20caovord2d 6174 . . 3 ((𝐴P𝐵P) → ((𝐴 +P 1P)<P (1P +P 𝐵) ↔ ((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P)))
229, 12, 213bitr2d 216 . 2 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P)))
23 addclpr 7720 . . . 4 ((𝐵P ∧ 1PP) → (𝐵 +P 1P) ∈ P)
243, 2, 23syl2anc 411 . . 3 ((𝐴P𝐵P) → (𝐵 +P 1P) ∈ P)
25 ltsrprg 7930 . . 3 ((((𝐴 +P 1P) ∈ P ∧ 1PP) ∧ ((𝐵 +P 1P) ∈ P ∧ 1PP)) → ([⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P))))
2616, 2, 24, 2, 25syl22anc 1272 . 2 ((𝐴P𝐵P) → ([⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P))))
276, 22, 263bitr4d 220 1 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ [⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  cop 3669   class class class wbr 4082  (class class class)co 6000  [cec 6676  Pcnp 7474  1Pc1p 7475   +P cpp 7476  <P cltp 7478   ~R cer 7479   <R cltr 7486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-i1p 7650  df-iplp 7651  df-iltp 7653  df-enr 7909  df-nr 7910  df-ltr 7913
This theorem is referenced by:  caucvgsrlemcau  7976  caucvgsrlembound  7977  caucvgsrlemgt1  7978  ltrennb  8037
  Copyright terms: Public domain W3C validator