![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prsrlt | GIF version |
Description: Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.) |
Ref | Expression |
---|---|
prsrlt | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ [〈(𝐴 +P 1P), 1P〉] ~R <R [〈(𝐵 +P 1P), 1P〉] ~R )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pr 7310 | . . . . 5 ⊢ 1P ∈ P | |
2 | 1 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 1P ∈ P) |
3 | simpr 109 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 𝐵 ∈ P) | |
4 | addassprg 7335 | . . . 4 ⊢ ((1P ∈ P ∧ 𝐵 ∈ P ∧ 1P ∈ P) → ((1P +P 𝐵) +P 1P) = (1P +P (𝐵 +P 1P))) | |
5 | 2, 3, 2, 4 | syl3anc 1199 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((1P +P 𝐵) +P 1P) = (1P +P (𝐵 +P 1P))) |
6 | 5 | breq2d 3907 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P) ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P)))) |
7 | simpl 108 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 𝐴 ∈ P) | |
8 | ltaprg 7375 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 1P ∈ P) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵))) | |
9 | 7, 3, 2, 8 | syl3anc 1199 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵))) |
10 | addcomprg 7334 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → (𝐴 +P 1P) = (1P +P 𝐴)) | |
11 | 7, 2, 10 | syl2anc 406 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 1P) = (1P +P 𝐴)) |
12 | 11 | breq1d 3905 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 1P)<P (1P +P 𝐵) ↔ (1P +P 𝐴)<P (1P +P 𝐵))) |
13 | ltaprg 7375 | . . . . 5 ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P ∧ ℎ ∈ P) → (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P (ℎ +P 𝑔))) | |
14 | 13 | adantl 273 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P ∧ ℎ ∈ P)) → (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P (ℎ +P 𝑔))) |
15 | addclpr 7293 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → (𝐴 +P 1P) ∈ P) | |
16 | 7, 2, 15 | syl2anc 406 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 1P) ∈ P) |
17 | addclpr 7293 | . . . . 5 ⊢ ((1P ∈ P ∧ 𝐵 ∈ P) → (1P +P 𝐵) ∈ P) | |
18 | 2, 3, 17 | syl2anc 406 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (1P +P 𝐵) ∈ P) |
19 | addcomprg 7334 | . . . . 5 ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓)) | |
20 | 19 | adantl 273 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓)) |
21 | 14, 16, 18, 2, 20 | caovord2d 5894 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 1P)<P (1P +P 𝐵) ↔ ((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P))) |
22 | 9, 12, 21 | 3bitr2d 215 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P))) |
23 | addclpr 7293 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 1P ∈ P) → (𝐵 +P 1P) ∈ P) | |
24 | 3, 2, 23 | syl2anc 406 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐵 +P 1P) ∈ P) |
25 | ltsrprg 7490 | . . 3 ⊢ ((((𝐴 +P 1P) ∈ P ∧ 1P ∈ P) ∧ ((𝐵 +P 1P) ∈ P ∧ 1P ∈ P)) → ([〈(𝐴 +P 1P), 1P〉] ~R <R [〈(𝐵 +P 1P), 1P〉] ~R ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P)))) | |
26 | 16, 2, 24, 2, 25 | syl22anc 1200 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ([〈(𝐴 +P 1P), 1P〉] ~R <R [〈(𝐵 +P 1P), 1P〉] ~R ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P)))) |
27 | 6, 22, 26 | 3bitr4d 219 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ [〈(𝐴 +P 1P), 1P〉] ~R <R [〈(𝐵 +P 1P), 1P〉] ~R )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 945 = wceq 1314 ∈ wcel 1463 〈cop 3496 class class class wbr 3895 (class class class)co 5728 [cec 6381 Pcnp 7047 1Pc1p 7048 +P cpp 7049 <P cltp 7051 ~R cer 7052 <R cltr 7059 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-eprel 4171 df-id 4175 df-po 4178 df-iso 4179 df-iord 4248 df-on 4250 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-recs 6156 df-irdg 6221 df-1o 6267 df-2o 6268 df-oadd 6271 df-omul 6272 df-er 6383 df-ec 6385 df-qs 6389 df-ni 7060 df-pli 7061 df-mi 7062 df-lti 7063 df-plpq 7100 df-mpq 7101 df-enq 7103 df-nqqs 7104 df-plqqs 7105 df-mqqs 7106 df-1nqqs 7107 df-rq 7108 df-ltnqqs 7109 df-enq0 7180 df-nq0 7181 df-0nq0 7182 df-plq0 7183 df-mq0 7184 df-inp 7222 df-i1p 7223 df-iplp 7224 df-iltp 7226 df-enr 7469 df-nr 7470 df-ltr 7473 |
This theorem is referenced by: caucvgsrlemcau 7535 caucvgsrlembound 7536 caucvgsrlemgt1 7537 ltrennb 7589 |
Copyright terms: Public domain | W3C validator |