ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrlt GIF version

Theorem prsrlt 7749
Description: Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsrlt ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ [⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ))

Proof of Theorem prsrlt
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pr 7516 . . . . 5 1PP
21a1i 9 . . . 4 ((𝐴P𝐵P) → 1PP)
3 simpr 109 . . . 4 ((𝐴P𝐵P) → 𝐵P)
4 addassprg 7541 . . . 4 ((1PP𝐵P ∧ 1PP) → ((1P +P 𝐵) +P 1P) = (1P +P (𝐵 +P 1P)))
52, 3, 2, 4syl3anc 1233 . . 3 ((𝐴P𝐵P) → ((1P +P 𝐵) +P 1P) = (1P +P (𝐵 +P 1P)))
65breq2d 4001 . 2 ((𝐴P𝐵P) → (((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P) ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P))))
7 simpl 108 . . . 4 ((𝐴P𝐵P) → 𝐴P)
8 ltaprg 7581 . . . 4 ((𝐴P𝐵P ∧ 1PP) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵)))
97, 3, 2, 8syl3anc 1233 . . 3 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵)))
10 addcomprg 7540 . . . . 5 ((𝐴P ∧ 1PP) → (𝐴 +P 1P) = (1P +P 𝐴))
117, 2, 10syl2anc 409 . . . 4 ((𝐴P𝐵P) → (𝐴 +P 1P) = (1P +P 𝐴))
1211breq1d 3999 . . 3 ((𝐴P𝐵P) → ((𝐴 +P 1P)<P (1P +P 𝐵) ↔ (1P +P 𝐴)<P (1P +P 𝐵)))
13 ltaprg 7581 . . . . 5 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
1413adantl 275 . . . 4 (((𝐴P𝐵P) ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
15 addclpr 7499 . . . . 5 ((𝐴P ∧ 1PP) → (𝐴 +P 1P) ∈ P)
167, 2, 15syl2anc 409 . . . 4 ((𝐴P𝐵P) → (𝐴 +P 1P) ∈ P)
17 addclpr 7499 . . . . 5 ((1PP𝐵P) → (1P +P 𝐵) ∈ P)
182, 3, 17syl2anc 409 . . . 4 ((𝐴P𝐵P) → (1P +P 𝐵) ∈ P)
19 addcomprg 7540 . . . . 5 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
2019adantl 275 . . . 4 (((𝐴P𝐵P) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
2114, 16, 18, 2, 20caovord2d 6022 . . 3 ((𝐴P𝐵P) → ((𝐴 +P 1P)<P (1P +P 𝐵) ↔ ((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P)))
229, 12, 213bitr2d 215 . 2 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P)))
23 addclpr 7499 . . . 4 ((𝐵P ∧ 1PP) → (𝐵 +P 1P) ∈ P)
243, 2, 23syl2anc 409 . . 3 ((𝐴P𝐵P) → (𝐵 +P 1P) ∈ P)
25 ltsrprg 7709 . . 3 ((((𝐴 +P 1P) ∈ P ∧ 1PP) ∧ ((𝐵 +P 1P) ∈ P ∧ 1PP)) → ([⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P))))
2616, 2, 24, 2, 25syl22anc 1234 . 2 ((𝐴P𝐵P) → ([⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P))))
276, 22, 263bitr4d 219 1 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ [⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  cop 3586   class class class wbr 3989  (class class class)co 5853  [cec 6511  Pcnp 7253  1Pc1p 7254   +P cpp 7255  <P cltp 7257   ~R cer 7258   <R cltr 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-iltp 7432  df-enr 7688  df-nr 7689  df-ltr 7692
This theorem is referenced by:  caucvgsrlemcau  7755  caucvgsrlembound  7756  caucvgsrlemgt1  7757  ltrennb  7816
  Copyright terms: Public domain W3C validator