ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrlt GIF version

Theorem prsrlt 7529
Description: Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsrlt ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ [⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ))

Proof of Theorem prsrlt
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pr 7310 . . . . 5 1PP
21a1i 9 . . . 4 ((𝐴P𝐵P) → 1PP)
3 simpr 109 . . . 4 ((𝐴P𝐵P) → 𝐵P)
4 addassprg 7335 . . . 4 ((1PP𝐵P ∧ 1PP) → ((1P +P 𝐵) +P 1P) = (1P +P (𝐵 +P 1P)))
52, 3, 2, 4syl3anc 1199 . . 3 ((𝐴P𝐵P) → ((1P +P 𝐵) +P 1P) = (1P +P (𝐵 +P 1P)))
65breq2d 3907 . 2 ((𝐴P𝐵P) → (((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P) ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P))))
7 simpl 108 . . . 4 ((𝐴P𝐵P) → 𝐴P)
8 ltaprg 7375 . . . 4 ((𝐴P𝐵P ∧ 1PP) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵)))
97, 3, 2, 8syl3anc 1199 . . 3 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵)))
10 addcomprg 7334 . . . . 5 ((𝐴P ∧ 1PP) → (𝐴 +P 1P) = (1P +P 𝐴))
117, 2, 10syl2anc 406 . . . 4 ((𝐴P𝐵P) → (𝐴 +P 1P) = (1P +P 𝐴))
1211breq1d 3905 . . 3 ((𝐴P𝐵P) → ((𝐴 +P 1P)<P (1P +P 𝐵) ↔ (1P +P 𝐴)<P (1P +P 𝐵)))
13 ltaprg 7375 . . . . 5 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
1413adantl 273 . . . 4 (((𝐴P𝐵P) ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
15 addclpr 7293 . . . . 5 ((𝐴P ∧ 1PP) → (𝐴 +P 1P) ∈ P)
167, 2, 15syl2anc 406 . . . 4 ((𝐴P𝐵P) → (𝐴 +P 1P) ∈ P)
17 addclpr 7293 . . . . 5 ((1PP𝐵P) → (1P +P 𝐵) ∈ P)
182, 3, 17syl2anc 406 . . . 4 ((𝐴P𝐵P) → (1P +P 𝐵) ∈ P)
19 addcomprg 7334 . . . . 5 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
2019adantl 273 . . . 4 (((𝐴P𝐵P) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
2114, 16, 18, 2, 20caovord2d 5894 . . 3 ((𝐴P𝐵P) → ((𝐴 +P 1P)<P (1P +P 𝐵) ↔ ((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P)))
229, 12, 213bitr2d 215 . 2 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P)))
23 addclpr 7293 . . . 4 ((𝐵P ∧ 1PP) → (𝐵 +P 1P) ∈ P)
243, 2, 23syl2anc 406 . . 3 ((𝐴P𝐵P) → (𝐵 +P 1P) ∈ P)
25 ltsrprg 7490 . . 3 ((((𝐴 +P 1P) ∈ P ∧ 1PP) ∧ ((𝐵 +P 1P) ∈ P ∧ 1PP)) → ([⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P))))
2616, 2, 24, 2, 25syl22anc 1200 . 2 ((𝐴P𝐵P) → ([⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P))))
276, 22, 263bitr4d 219 1 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ [⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 945   = wceq 1314  wcel 1463  cop 3496   class class class wbr 3895  (class class class)co 5728  [cec 6381  Pcnp 7047  1Pc1p 7048   +P cpp 7049  <P cltp 7051   ~R cer 7052   <R cltr 7059
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-eprel 4171  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-1o 6267  df-2o 6268  df-oadd 6271  df-omul 6272  df-er 6383  df-ec 6385  df-qs 6389  df-ni 7060  df-pli 7061  df-mi 7062  df-lti 7063  df-plpq 7100  df-mpq 7101  df-enq 7103  df-nqqs 7104  df-plqqs 7105  df-mqqs 7106  df-1nqqs 7107  df-rq 7108  df-ltnqqs 7109  df-enq0 7180  df-nq0 7181  df-0nq0 7182  df-plq0 7183  df-mq0 7184  df-inp 7222  df-i1p 7223  df-iplp 7224  df-iltp 7226  df-enr 7469  df-nr 7470  df-ltr 7473
This theorem is referenced by:  caucvgsrlemcau  7535  caucvgsrlembound  7536  caucvgsrlemgt1  7537  ltrennb  7589
  Copyright terms: Public domain W3C validator