![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prsrlt | GIF version |
Description: Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.) |
Ref | Expression |
---|---|
prsrlt | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ [⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pr 7555 | . . . . 5 ⊢ 1P ∈ P | |
2 | 1 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 1P ∈ P) |
3 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 𝐵 ∈ P) | |
4 | addassprg 7580 | . . . 4 ⊢ ((1P ∈ P ∧ 𝐵 ∈ P ∧ 1P ∈ P) → ((1P +P 𝐵) +P 1P) = (1P +P (𝐵 +P 1P))) | |
5 | 2, 3, 2, 4 | syl3anc 1238 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((1P +P 𝐵) +P 1P) = (1P +P (𝐵 +P 1P))) |
6 | 5 | breq2d 4017 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P) ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P)))) |
7 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → 𝐴 ∈ P) | |
8 | ltaprg 7620 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 1P ∈ P) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵))) | |
9 | 7, 3, 2, 8 | syl3anc 1238 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵))) |
10 | addcomprg 7579 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → (𝐴 +P 1P) = (1P +P 𝐴)) | |
11 | 7, 2, 10 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 1P) = (1P +P 𝐴)) |
12 | 11 | breq1d 4015 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 1P)<P (1P +P 𝐵) ↔ (1P +P 𝐴)<P (1P +P 𝐵))) |
13 | ltaprg 7620 | . . . . 5 ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P ∧ ℎ ∈ P) → (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P (ℎ +P 𝑔))) | |
14 | 13 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P ∧ ℎ ∈ P)) → (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P (ℎ +P 𝑔))) |
15 | addclpr 7538 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → (𝐴 +P 1P) ∈ P) | |
16 | 7, 2, 15 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 1P) ∈ P) |
17 | addclpr 7538 | . . . . 5 ⊢ ((1P ∈ P ∧ 𝐵 ∈ P) → (1P +P 𝐵) ∈ P) | |
18 | 2, 3, 17 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (1P +P 𝐵) ∈ P) |
19 | addcomprg 7579 | . . . . 5 ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓)) | |
20 | 19 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓)) |
21 | 14, 16, 18, 2, 20 | caovord2d 6046 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 1P)<P (1P +P 𝐵) ↔ ((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P))) |
22 | 9, 12, 21 | 3bitr2d 216 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ((𝐴 +P 1P) +P 1P)<P ((1P +P 𝐵) +P 1P))) |
23 | addclpr 7538 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 1P ∈ P) → (𝐵 +P 1P) ∈ P) | |
24 | 3, 2, 23 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐵 +P 1P) ∈ P) |
25 | ltsrprg 7748 | . . 3 ⊢ ((((𝐴 +P 1P) ∈ P ∧ 1P ∈ P) ∧ ((𝐵 +P 1P) ∈ P ∧ 1P ∈ P)) → ([⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P)))) | |
26 | 16, 2, 24, 2, 25 | syl22anc 1239 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ([⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ↔ ((𝐴 +P 1P) +P 1P)<P (1P +P (𝐵 +P 1P)))) |
27 | 6, 22, 26 | 3bitr4d 220 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ [⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ⟨cop 3597 class class class wbr 4005 (class class class)co 5877 [cec 6535 Pcnp 7292 1Pc1p 7293 +P cpp 7294 <P cltp 7296 ~R cer 7297 <R cltr 7304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-1o 6419 df-2o 6420 df-oadd 6423 df-omul 6424 df-er 6537 df-ec 6539 df-qs 6543 df-ni 7305 df-pli 7306 df-mi 7307 df-lti 7308 df-plpq 7345 df-mpq 7346 df-enq 7348 df-nqqs 7349 df-plqqs 7350 df-mqqs 7351 df-1nqqs 7352 df-rq 7353 df-ltnqqs 7354 df-enq0 7425 df-nq0 7426 df-0nq0 7427 df-plq0 7428 df-mq0 7429 df-inp 7467 df-i1p 7468 df-iplp 7469 df-iltp 7471 df-enr 7727 df-nr 7728 df-ltr 7731 |
This theorem is referenced by: caucvgsrlemcau 7794 caucvgsrlembound 7795 caucvgsrlemgt1 7796 ltrennb 7855 |
Copyright terms: Public domain | W3C validator |