Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rec11ap GIF version

Theorem rec11ap 8477
 Description: Reciprocal is one-to-one. (Contributed by Jim Kingdon, 25-Feb-2020.)
Assertion
Ref Expression
rec11ap (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem rec11ap
StepHypRef Expression
1 1cnd 7789 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → 1 ∈ ℂ)
2 recclap 8446 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → (1 / 𝐵) ∈ ℂ)
32adantl 275 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (1 / 𝐵) ∈ ℂ)
4 simpl 108 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 ∈ ℂ ∧ 𝐴 # 0))
5 divmulap 8442 . . 3 ((1 ∈ ℂ ∧ (1 / 𝐵) ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 # 0)) → ((1 / 𝐴) = (1 / 𝐵) ↔ (𝐴 · (1 / 𝐵)) = 1))
61, 3, 4, 5syl3anc 1216 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 / 𝐴) = (1 / 𝐵) ↔ (𝐴 · (1 / 𝐵)) = 1))
7 simpll 518 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → 𝐴 ∈ ℂ)
8 simprl 520 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → 𝐵 ∈ ℂ)
9 simprr 521 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → 𝐵 # 0)
10 divrecap 8455 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
117, 8, 9, 10syl3anc 1216 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
1211eqeq1d 2148 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((𝐴 / 𝐵) = 1 ↔ (𝐴 · (1 / 𝐵)) = 1))
13 diveqap1 8472 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵))
147, 8, 9, 13syl3anc 1216 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵))
156, 12, 143bitr2d 215 1 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331   ∈ wcel 1480   class class class wbr 3929  (class class class)co 5774  ℂcc 7625  0cc0 7627  1c1 7628   · cmul 7632   # cap 8350   / cdiv 8439 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440 This theorem is referenced by:  rec11api  8520  rec11apd  8578
 Copyright terms: Public domain W3C validator