ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3t1e3 GIF version

Theorem 3t1e3 9151
Description: 3 times 1 equals 3. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3t1e3 (3 · 1) = 3

Proof of Theorem 3t1e3
StepHypRef Expression
1 3cn 9070 . 2 3 ∈ ℂ
21mulridi 8033 1 (3 · 1) = 3
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5925  1c1 7885   · cmul 7889  3c3 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7976  ax-1cn 7977  ax-1re 7978  ax-icn 7979  ax-addcl 7980  ax-addrcl 7981  ax-mulcl 7982  ax-mulcom 7985  ax-mulass 7987  ax-distr 7988  ax-1rid 7991  ax-cnre 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928  df-2 9054  df-3 9055
This theorem is referenced by:  3t3e9  9153  pigt3  15127
  Copyright terms: Public domain W3C validator