ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3t1e3 GIF version

Theorem 3t1e3 9227
Description: 3 times 1 equals 3. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3t1e3 (3 · 1) = 3

Proof of Theorem 3t1e3
StepHypRef Expression
1 3cn 9146 . 2 3 ∈ ℂ
21mulridi 8109 1 (3 · 1) = 3
Colors of variables: wff set class
Syntax hints:   = wceq 1373  (class class class)co 5967  1c1 7961   · cmul 7965  3c3 9123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulcom 8061  ax-mulass 8063  ax-distr 8064  ax-1rid 8067  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-2 9130  df-3 9131
This theorem is referenced by:  3t3e9  9229  pigt3  15431
  Copyright terms: Public domain W3C validator