![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3t1e3 | GIF version |
Description: 3 times 1 equals 3. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
3t1e3 | ⊢ (3 · 1) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 8996 | . 2 ⊢ 3 ∈ ℂ | |
2 | 1 | mulid1i 7961 | 1 ⊢ (3 · 1) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 (class class class)co 5877 1c1 7814 · cmul 7818 3c3 8973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulcom 7914 ax-mulass 7916 ax-distr 7917 ax-1rid 7920 ax-cnre 7924 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5880 df-2 8980 df-3 8981 |
This theorem is referenced by: 3t3e9 9078 pigt3 14350 |
Copyright terms: Public domain | W3C validator |