Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulid1i | GIF version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mulid1i | ⊢ (𝐴 · 1) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mulid1 7869 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 1) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ∈ wcel 2128 (class class class)co 5821 ℂcc 7724 1c1 7727 · cmul 7731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-resscn 7818 ax-1cn 7819 ax-icn 7821 ax-addcl 7822 ax-mulcl 7824 ax-mulcom 7827 ax-mulass 7829 ax-distr 7830 ax-1rid 7833 ax-cnre 7837 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-iota 5134 df-fv 5177 df-ov 5824 |
This theorem is referenced by: rimul 8454 muleqadd 8536 1t1e1 8979 2t1e2 8980 3t1e3 8982 halfpm6th 9047 iap0 9050 9p1e10 9291 numltc 9314 numsucc 9328 dec10p 9331 numadd 9335 numaddc 9336 11multnc 9356 4t3lem 9385 5t2e10 9388 9t11e99 9418 rei 10792 imi 10793 cji 10795 0.999... 11411 efival 11622 ef01bndlem 11646 3lcm2e6 12025 dveflem 13058 efhalfpi 13091 |
Copyright terms: Public domain | W3C validator |