![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulid1i | GIF version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mulid1i | ⊢ (𝐴 · 1) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mulid1 7483 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝐴 · 1) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 ∈ wcel 1438 (class class class)co 5652 ℂcc 7346 1c1 7349 · cmul 7353 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-resscn 7435 ax-1cn 7436 ax-icn 7438 ax-addcl 7439 ax-mulcl 7441 ax-mulcom 7444 ax-mulass 7446 ax-distr 7447 ax-1rid 7450 ax-cnre 7454 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-iota 4980 df-fv 5023 df-ov 5655 |
This theorem is referenced by: rimul 8060 muleqadd 8135 1t1e1 8566 2t1e2 8567 3t1e3 8569 halfpm6th 8634 iap0 8637 9p1e10 8877 numltc 8900 numsucc 8914 dec10p 8917 numadd 8921 numaddc 8922 11multnc 8942 4t3lem 8971 5t2e10 8974 9t11e99 9004 rei 10329 imi 10330 cji 10332 0.999... 10911 efival 11019 ef01bndlem 11043 3lcm2e6 11413 |
Copyright terms: Public domain | W3C validator |