Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2t2e4 | GIF version |
Description: 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
2t2e4 | ⊢ (2 · 2) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8928 | . . 3 ⊢ 2 ∈ ℂ | |
2 | 1 | 2timesi 8987 | . 2 ⊢ (2 · 2) = (2 + 2) |
3 | 2p2e4 8984 | . 2 ⊢ (2 + 2) = 4 | |
4 | 2, 3 | eqtri 2186 | 1 ⊢ (2 · 2) = 4 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5842 + caddc 7756 · cmul 7758 2c2 8908 4c4 8910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-1rid 7860 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-2 8916 df-3 8917 df-4 8918 |
This theorem is referenced by: 4d2e2 9017 halfpm6th 9077 div4p1lem1div2 9110 3halfnz 9288 decbin0 9461 sq2 10550 sq4e2t8 10552 sqoddm1div8 10608 faclbnd2 10655 4bc2eq6 10687 amgm2 11060 sin4lt0 11707 z4even 11853 flodddiv4 11871 flodddiv4t2lthalf 11874 4nprm 12061 dveflem 13337 sin0pilem2 13353 sinhalfpilem 13362 sincosq1lem 13396 tangtx 13409 sincos4thpi 13411 ex-fl 13616 |
Copyright terms: Public domain | W3C validator |