| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2t2e4 | GIF version | ||
| Description: 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2t2e4 | ⊢ (2 · 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9127 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | 1 | 2timesi 9186 | . 2 ⊢ (2 · 2) = (2 + 2) |
| 3 | 2p2e4 9183 | . 2 ⊢ (2 + 2) = 4 | |
| 4 | 2, 3 | eqtri 2227 | 1 ⊢ (2 · 2) = 4 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5957 + caddc 7948 · cmul 7950 2c2 9107 4c4 9109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-1rid 8052 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-2 9115 df-3 9116 df-4 9117 |
| This theorem is referenced by: 4d2e2 9217 halfpm6th 9277 div4p1lem1div2 9311 3halfnz 9490 decbin0 9663 fldiv4lem1div2uz2 10471 sq2 10802 sq4e2t8 10804 sqoddm1div8 10860 faclbnd2 10909 4bc2eq6 10941 amgm2 11504 sin4lt0 12153 z4even 12302 flodddiv4 12322 flodddiv4t2lthalf 12325 4nprm 12526 2exp4 12829 2exp16 12835 dveflem 15273 sin0pilem2 15329 sinhalfpilem 15338 sincosq1lem 15372 tangtx 15385 sincos4thpi 15387 gausslemma2dlem3 15615 m1lgs 15637 2lgslem1a2 15639 2lgslem3a 15645 2lgslem3b 15646 2lgslem3c 15647 2lgslem3d 15648 ex-fl 15800 |
| Copyright terms: Public domain | W3C validator |