| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2t2e4 | GIF version | ||
| Description: 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2t2e4 | ⊢ (2 · 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9061 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | 1 | 2timesi 9120 | . 2 ⊢ (2 · 2) = (2 + 2) |
| 3 | 2p2e4 9117 | . 2 ⊢ (2 + 2) = 4 | |
| 4 | 2, 3 | eqtri 2217 | 1 ⊢ (2 · 2) = 4 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5922 + caddc 7882 · cmul 7884 2c2 9041 4c4 9043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-1rid 7986 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-2 9049 df-3 9050 df-4 9051 |
| This theorem is referenced by: 4d2e2 9151 halfpm6th 9211 div4p1lem1div2 9245 3halfnz 9423 decbin0 9596 fldiv4lem1div2uz2 10396 sq2 10727 sq4e2t8 10729 sqoddm1div8 10785 faclbnd2 10834 4bc2eq6 10866 amgm2 11283 sin4lt0 11932 z4even 12081 flodddiv4 12101 flodddiv4t2lthalf 12104 4nprm 12297 2exp4 12600 2exp16 12606 dveflem 14962 sin0pilem2 15018 sinhalfpilem 15027 sincosq1lem 15061 tangtx 15074 sincos4thpi 15076 gausslemma2dlem3 15304 m1lgs 15326 2lgslem1a2 15328 2lgslem3a 15334 2lgslem3b 15335 2lgslem3c 15336 2lgslem3d 15337 ex-fl 15371 |
| Copyright terms: Public domain | W3C validator |