| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2t2e4 | GIF version | ||
| Description: 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2t2e4 | ⊢ (2 · 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9177 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | 1 | 2timesi 9236 | . 2 ⊢ (2 · 2) = (2 + 2) |
| 3 | 2p2e4 9233 | . 2 ⊢ (2 + 2) = 4 | |
| 4 | 2, 3 | eqtri 2250 | 1 ⊢ (2 · 2) = 4 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 (class class class)co 6000 + caddc 7998 · cmul 8000 2c2 9157 4c4 9159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-1rid 8102 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-2 9165 df-3 9166 df-4 9167 |
| This theorem is referenced by: 4d2e2 9267 halfpm6th 9327 div4p1lem1div2 9361 3halfnz 9540 decbin0 9713 fldiv4lem1div2uz2 10521 sq2 10852 sq4e2t8 10854 sqoddm1div8 10910 faclbnd2 10959 4bc2eq6 10991 amgm2 11624 sin4lt0 12273 z4even 12422 flodddiv4 12442 flodddiv4t2lthalf 12445 4nprm 12646 2exp4 12949 2exp16 12955 dveflem 15394 sin0pilem2 15450 sinhalfpilem 15459 sincosq1lem 15493 tangtx 15506 sincos4thpi 15508 gausslemma2dlem3 15736 m1lgs 15758 2lgslem1a2 15760 2lgslem3a 15766 2lgslem3b 15767 2lgslem3c 15768 2lgslem3d 15769 ex-fl 16047 |
| Copyright terms: Public domain | W3C validator |