| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2t2e4 | GIF version | ||
| Description: 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2t2e4 | ⊢ (2 · 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9106 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | 1 | 2timesi 9165 | . 2 ⊢ (2 · 2) = (2 + 2) |
| 3 | 2p2e4 9162 | . 2 ⊢ (2 + 2) = 4 | |
| 4 | 2, 3 | eqtri 2225 | 1 ⊢ (2 · 2) = 4 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 (class class class)co 5943 + caddc 7927 · cmul 7929 2c2 9086 4c4 9088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-1rid 8031 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-2 9094 df-3 9095 df-4 9096 |
| This theorem is referenced by: 4d2e2 9196 halfpm6th 9256 div4p1lem1div2 9290 3halfnz 9469 decbin0 9642 fldiv4lem1div2uz2 10447 sq2 10778 sq4e2t8 10780 sqoddm1div8 10836 faclbnd2 10885 4bc2eq6 10917 amgm2 11400 sin4lt0 12049 z4even 12198 flodddiv4 12218 flodddiv4t2lthalf 12221 4nprm 12422 2exp4 12725 2exp16 12731 dveflem 15169 sin0pilem2 15225 sinhalfpilem 15234 sincosq1lem 15268 tangtx 15281 sincos4thpi 15283 gausslemma2dlem3 15511 m1lgs 15533 2lgslem1a2 15535 2lgslem3a 15541 2lgslem3b 15542 2lgslem3c 15543 2lgslem3d 15544 ex-fl 15623 |
| Copyright terms: Public domain | W3C validator |