| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2t2e4 | GIF version | ||
| Description: 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2t2e4 | ⊢ (2 · 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9080 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | 1 | 2timesi 9139 | . 2 ⊢ (2 · 2) = (2 + 2) |
| 3 | 2p2e4 9136 | . 2 ⊢ (2 + 2) = 4 | |
| 4 | 2, 3 | eqtri 2217 | 1 ⊢ (2 · 2) = 4 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5925 + caddc 7901 · cmul 7903 2c2 9060 4c4 9062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-1rid 8005 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-2 9068 df-3 9069 df-4 9070 |
| This theorem is referenced by: 4d2e2 9170 halfpm6th 9230 div4p1lem1div2 9264 3halfnz 9442 decbin0 9615 fldiv4lem1div2uz2 10415 sq2 10746 sq4e2t8 10748 sqoddm1div8 10804 faclbnd2 10853 4bc2eq6 10885 amgm2 11302 sin4lt0 11951 z4even 12100 flodddiv4 12120 flodddiv4t2lthalf 12123 4nprm 12324 2exp4 12627 2exp16 12633 dveflem 15070 sin0pilem2 15126 sinhalfpilem 15135 sincosq1lem 15169 tangtx 15182 sincos4thpi 15184 gausslemma2dlem3 15412 m1lgs 15434 2lgslem1a2 15436 2lgslem3a 15442 2lgslem3b 15443 2lgslem3c 15444 2lgslem3d 15445 ex-fl 15479 |
| Copyright terms: Public domain | W3C validator |