Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemeq1 GIF version

Theorem trilpolemeq1 14444
Description: Lemma for trilpo 14447. The 𝐴 = 1 case. This is proved by noting that if any (𝐹𝑥) is zero, then the infinite sum 𝐴 is less than one based on the term which is zero. We are using the fact that the 𝐹 sequence is decidable (in the sense that each element is either zero or one). (Contributed by Jim Kingdon, 23-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f (𝜑𝐹:ℕ⟶{0, 1})
trilpolemgt1.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
trilpolemeq1.a (𝜑𝐴 = 1)
Assertion
Ref Expression
trilpolemeq1 (𝜑 → ∀𝑥 ∈ ℕ (𝐹𝑥) = 1)
Distinct variable groups:   𝑖,𝐹   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑖)   𝐹(𝑥)

Proof of Theorem trilpolemeq1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 trilpolemeq1.a . . . . 5 (𝜑𝐴 = 1)
21ad2antrr 488 . . . 4 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐴 = 1)
3 trilpolemgt1.f . . . . . . . 8 (𝜑𝐹:ℕ⟶{0, 1})
4 trilpolemgt1.a . . . . . . . 8 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
53, 4trilpolemcl 14441 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
65ad2antrr 488 . . . . . 6 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐴 ∈ ℝ)
7 nnuz 9552 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
8 eqid 2177 . . . . . . . . . . . . . 14 (ℤ‘(𝑥 + 1)) = (ℤ‘(𝑥 + 1))
9 simplr 528 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝑥 ∈ ℕ)
109peano2nnd 8923 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (𝑥 + 1) ∈ ℕ)
11 eqid 2177 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))
12 oveq2 5877 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖))
1312oveq2d 5885 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖)))
14 fveq2 5511 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
1513, 14oveq12d 5887 . . . . . . . . . . . . . . 15 (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐹𝑛)) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
16 simpr 110 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
17 2rp 9645 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ+
1817a1i 9 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → 2 ∈ ℝ+)
1916nnzd 9363 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
2018, 19rpexpcld 10663 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+)
2120rpreccld 9694 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ+)
2221rpred 9683 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
23 0re 7948 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
24 1re 7947 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
25 prssi 3749 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
2623, 24, 25mp2an 426 . . . . . . . . . . . . . . . . 17 {0, 1} ⊆ ℝ
273ad3antrrr 492 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → 𝐹:ℕ⟶{0, 1})
2827, 16ffvelcdmd 5648 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ {0, 1})
2926, 28sselid 3153 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ)
3022, 29remulcld 7978 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
3111, 15, 16, 30fvmptd3 5605 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
3230recnd 7976 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℂ)
333, 11trilpolemclim 14440 . . . . . . . . . . . . . . 15 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
3433ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
357, 8, 10, 31, 32, 34isumsplit 11483 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖)) = (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
369nncnd 8922 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝑥 ∈ ℂ)
37 1cnd 7964 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 1 ∈ ℂ)
3836, 37pncand 8259 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ((𝑥 + 1) − 1) = 𝑥)
3938oveq2d 5885 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (1...((𝑥 + 1) − 1)) = (1...𝑥))
409, 7eleqtrdi 2270 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝑥 ∈ (ℤ‘1))
41 fzisfzounsn 10222 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℤ‘1) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥}))
4240, 41syl 14 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥}))
4339, 42eqtrd 2210 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (1...((𝑥 + 1) − 1)) = ((1..^𝑥) ∪ {𝑥}))
4443sumeq1d 11358 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) = Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐹𝑖)))
45 nfv 1528 . . . . . . . . . . . . . . . 16 𝑖((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0)
46 nfcv 2319 . . . . . . . . . . . . . . . 16 𝑖((1 / (2↑𝑥)) · (𝐹𝑥))
47 1zzd 9269 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 1 ∈ ℤ)
489nnzd 9363 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝑥 ∈ ℤ)
49 fzofig 10418 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (1..^𝑥) ∈ Fin)
5047, 48, 49syl2anc 411 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (1..^𝑥) ∈ Fin)
51 fzonel 10146 . . . . . . . . . . . . . . . . 17 ¬ 𝑥 ∈ (1..^𝑥)
5251a1i 9 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ¬ 𝑥 ∈ (1..^𝑥))
5317a1i 9 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → 2 ∈ ℝ+)
54 elfzoelz 10133 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (1..^𝑥) → 𝑖 ∈ ℤ)
5554adantl 277 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → 𝑖 ∈ ℤ)
5653, 55rpexpcld 10663 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (2↑𝑖) ∈ ℝ+)
5756rpreccld 9694 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (1 / (2↑𝑖)) ∈ ℝ+)
5857rpred 9683 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (1 / (2↑𝑖)) ∈ ℝ)
59 elfzouz 10137 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (1..^𝑥) → 𝑖 ∈ (ℤ‘1))
6059, 7eleqtrrdi 2271 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (1..^𝑥) → 𝑖 ∈ ℕ)
6160, 29sylan2 286 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (𝐹𝑖) ∈ ℝ)
6258, 61remulcld 7978 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
6362recnd 7976 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℂ)
64 oveq2 5877 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑥 → (2↑𝑖) = (2↑𝑥))
6564oveq2d 5885 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑥 → (1 / (2↑𝑖)) = (1 / (2↑𝑥)))
66 fveq2 5511 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑥 → (𝐹𝑖) = (𝐹𝑥))
6765, 66oveq12d 5887 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑥 → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑥)) · (𝐹𝑥)))
6817a1i 9 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 2 ∈ ℝ+)
6968, 48rpexpcld 10663 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (2↑𝑥) ∈ ℝ+)
7069rpreccld 9694 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (1 / (2↑𝑥)) ∈ ℝ+)
7170rpred 9683 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (1 / (2↑𝑥)) ∈ ℝ)
723ad2antrr 488 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐹:ℕ⟶{0, 1})
7372, 9ffvelcdmd 5648 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (𝐹𝑥) ∈ {0, 1})
7426, 73sselid 3153 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (𝐹𝑥) ∈ ℝ)
7571, 74remulcld 7978 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ((1 / (2↑𝑥)) · (𝐹𝑥)) ∈ ℝ)
7675recnd 7976 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ((1 / (2↑𝑥)) · (𝐹𝑥)) ∈ ℂ)
7745, 46, 50, 9, 52, 63, 67, 76fsumsplitsn 11402 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐹𝑖)) = (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + ((1 / (2↑𝑥)) · (𝐹𝑥))))
78 simpr 110 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (𝐹𝑥) = 0)
7978oveq2d 5885 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ((1 / (2↑𝑥)) · (𝐹𝑥)) = ((1 / (2↑𝑥)) · 0))
8070rpcnd 9685 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (1 / (2↑𝑥)) ∈ ℂ)
8180mul01d 8340 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ((1 / (2↑𝑥)) · 0) = 0)
8279, 81eqtrd 2210 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ((1 / (2↑𝑥)) · (𝐹𝑥)) = 0)
8382oveq2d 5885 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + ((1 / (2↑𝑥)) · (𝐹𝑥))) = (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + 0))
8444, 77, 833eqtrd 2214 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) = (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + 0))
8584oveq1d 5884 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))) = ((Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + 0) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
8635, 85eqtrd 2210 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + 0) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
8750, 62fsumrecl 11393 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
88 0red 7949 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 0 ∈ ℝ)
8987, 88readdcld 7977 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + 0) ∈ ℝ)
9010nnzd 9363 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (𝑥 + 1) ∈ ℤ)
91 eluznn 9589 . . . . . . . . . . . . . . . 16 (((𝑥 + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 𝑖 ∈ ℕ)
9210, 91sylan 283 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 𝑖 ∈ ℕ)
9392, 30syldan 282 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
9411, 15, 92, 93fvmptd3 5605 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
9531, 32eqeltrd 2254 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) ∈ ℂ)
967, 10, 95iserex 11331 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ ↔ seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ ))
9734, 96mpbid 147 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
988, 90, 94, 93, 97isumrecl 11421 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
9950, 58fsumrecl 11393 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) ∈ ℝ)
10099, 71readdcld 7977 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))) ∈ ℝ)
101 eqid 2177 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛))) = (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))
10292, 21syldan 282 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (1 / (2↑𝑖)) ∈ ℝ+)
103101, 13, 92, 102fvmptd3 5605 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) = (1 / (2↑𝑖)))
10492, 22syldan 282 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (1 / (2↑𝑖)) ∈ ℝ)
105 seqex 10433 . . . . . . . . . . . . . . . . 17 seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ V
106 ax-1cn 7895 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
107101geo2lim 11508 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℂ → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ 1)
108106, 107ax-mp 5 . . . . . . . . . . . . . . . . 17 seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ 1
109 breldmg 4829 . . . . . . . . . . . . . . . . 17 ((seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ V ∧ 1 ∈ ℂ ∧ seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ 1) → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
110105, 106, 108, 109mp3an 1337 . . . . . . . . . . . . . . . 16 seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝
111110a1i 9 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
112101, 13, 16, 21fvmptd3 5605 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) = (1 / (2↑𝑖)))
11321rpcnd 9685 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℂ)
114112, 113eqeltrd 2254 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) ∈ ℂ)
1157, 10, 114iserex 11331 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ ↔ seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ ))
116111, 115mpbid 147 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
1178, 90, 103, 104, 116isumrecl 11421 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖)) ∈ ℝ)
118 simpr 110 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 0) → (𝐹𝑖) = 0)
119118oveq2d 5885 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑖)) · 0))
12057adantr 276 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 0) → (1 / (2↑𝑖)) ∈ ℝ+)
121120rpcnd 9685 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 0) → (1 / (2↑𝑖)) ∈ ℂ)
122121mul01d 8340 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · 0) = 0)
123119, 122eqtrd 2210 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = 0)
124120rpge0d 9687 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 0) → 0 ≤ (1 / (2↑𝑖)))
125123, 124eqbrtrd 4022 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
126 simpr 110 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 1) → (𝐹𝑖) = 1)
127126oveq2d 5885 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑖)) · 1))
12858adantr 276 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℝ)
129128recnd 7976 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℂ)
130129mulid1d 7965 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · 1) = (1 / (2↑𝑖)))
131127, 130eqtrd 2210 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = (1 / (2↑𝑖)))
132128leidd 8461 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ≤ (1 / (2↑𝑖)))
133131, 132eqbrtrd 4022 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
13472adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → 𝐹:ℕ⟶{0, 1})
13560adantl 277 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → 𝑖 ∈ ℕ)
136134, 135ffvelcdmd 5648 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (𝐹𝑖) ∈ {0, 1})
137 elpri 3614 . . . . . . . . . . . . . . . . 17 ((𝐹𝑖) ∈ {0, 1} → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
138136, 137syl 14 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
139125, 133, 138mpjaodan 798 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
14050, 62, 58, 139fsumle 11455 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)))
14170rpgt0d 9686 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 0 < (1 / (2↑𝑥)))
14287, 88, 99, 71, 140, 141leltaddd 8513 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + 0) < (Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))))
14372, 4, 8, 10trilpolemisumle 14442 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖)))
14489, 98, 100, 117, 142, 143ltleaddd 8512 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ((Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + 0) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))) < ((Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
14586, 144eqbrtrd 4022 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖)) < ((Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
1464, 145eqbrtrid 4035 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐴 < ((Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
147 nfcv 2319 . . . . . . . . . . . 12 𝑖(1 / (2↑𝑥))
14857rpcnd 9685 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (1 / (2↑𝑖)) ∈ ℂ)
14945, 147, 50, 9, 52, 148, 65, 80fsumsplitsn 11402 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})(1 / (2↑𝑖)) = (Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))))
150149oveq1d 5884 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))) = ((Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
151146, 150breqtrrd 4028 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐴 < (Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
15242sumeq1d 11358 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖)) = Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})(1 / (2↑𝑖)))
153152oveq1d 5884 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))) = (Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
154151, 153breqtrrd 4028 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐴 < (Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
1557, 8, 10, 112, 113, 111isumsplit 11483 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ ℕ (1 / (2↑𝑖)) = (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
15639sumeq1d 11358 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))(1 / (2↑𝑖)) = Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖)))
157156oveq1d 5884 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))) = (Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
158155, 157eqtrd 2210 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ ℕ (1 / (2↑𝑖)) = (Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
159154, 158breqtrrd 4028 . . . . . . 7 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐴 < Σ𝑖 ∈ ℕ (1 / (2↑𝑖)))
160 geoihalfsum 11514 . . . . . . 7 Σ𝑖 ∈ ℕ (1 / (2↑𝑖)) = 1
161159, 160breqtrdi 4041 . . . . . 6 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐴 < 1)
1626, 161ltned 8061 . . . . 5 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐴 ≠ 1)
163162neneqd 2368 . . . 4 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ¬ 𝐴 = 1)
1642, 163pm2.65da 661 . . 3 ((𝜑𝑥 ∈ ℕ) → ¬ (𝐹𝑥) = 0)
1653ffvelcdmda 5647 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ {0, 1})
166 elpri 3614 . . . . 5 ((𝐹𝑥) ∈ {0, 1} → ((𝐹𝑥) = 0 ∨ (𝐹𝑥) = 1))
167165, 166syl 14 . . . 4 ((𝜑𝑥 ∈ ℕ) → ((𝐹𝑥) = 0 ∨ (𝐹𝑥) = 1))
168167orcomd 729 . . 3 ((𝜑𝑥 ∈ ℕ) → ((𝐹𝑥) = 1 ∨ (𝐹𝑥) = 0))
169164, 168ecased 1349 . 2 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) = 1)
170169ralrimiva 2550 1 (𝜑 → ∀𝑥 ∈ ℕ (𝐹𝑥) = 1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708   = wceq 1353  wcel 2148  wral 2455  Vcvv 2737  cun 3127  wss 3129  {csn 3591  {cpr 3592   class class class wbr 4000  cmpt 4061  dom cdm 4623  wf 5208  cfv 5212  (class class class)co 5869  Fincfn 6734  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118   / cdiv 8618  cn 8908  2c2 8959  cz 9242  cuz 9517  +crp 9640  ...cfz 9995  ..^cfzo 10128  seqcseq 10431  cexp 10505  cli 11270  Σcsu 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-ico 9881  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346
This theorem is referenced by:  trilpolemres  14446  redcwlpolemeq1  14458
  Copyright terms: Public domain W3C validator