| Step | Hyp | Ref
 | Expression | 
| 1 |   | trilpolemeq1.a | 
. . . . 5
⊢ (𝜑 → 𝐴 = 1) | 
| 2 | 1 | ad2antrr 488 | 
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 𝐴 = 1) | 
| 3 |   | trilpolemgt1.f | 
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) | 
| 4 |   | trilpolemgt1.a | 
. . . . . . . 8
⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) | 
| 5 | 3, 4 | trilpolemcl 15681 | 
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 6 | 5 | ad2antrr 488 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 𝐴 ∈ ℝ) | 
| 7 |   | nnuz 9637 | 
. . . . . . . . . . . . . 14
⊢ ℕ =
(ℤ≥‘1) | 
| 8 |   | eqid 2196 | 
. . . . . . . . . . . . . 14
⊢
(ℤ≥‘(𝑥 + 1)) = (ℤ≥‘(𝑥 + 1)) | 
| 9 |   | simplr 528 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 𝑥 ∈ ℕ) | 
| 10 | 9 | peano2nnd 9005 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (𝑥 + 1) ∈ ℕ) | 
| 11 |   | eqid 2196 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ ↦ ((1 /
(2↑𝑛)) · (𝐹‘𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛))) | 
| 12 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖)) | 
| 13 | 12 | oveq2d 5938 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖))) | 
| 14 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑖 → (𝐹‘𝑛) = (𝐹‘𝑖)) | 
| 15 | 13, 14 | oveq12d 5940 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐹‘𝑛)) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) | 
| 16 |   | simpr 110 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | 
| 17 |   | 2rp 9733 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℝ+ | 
| 18 | 17 | a1i 9 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ ℕ) → 2 ∈
ℝ+) | 
| 19 | 16 | nnzd 9447 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ) | 
| 20 | 18, 19 | rpexpcld 10789 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈
ℝ+) | 
| 21 | 20 | rpreccld 9782 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈
ℝ+) | 
| 22 | 21 | rpred 9771 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈
ℝ) | 
| 23 |   | 0re 8026 | 
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℝ | 
| 24 |   | 1re 8025 | 
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℝ | 
| 25 |   | prssi 3780 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆
ℝ) | 
| 26 | 23, 24, 25 | mp2an 426 | 
. . . . . . . . . . . . . . . . 17
⊢ {0, 1}
⊆ ℝ | 
| 27 | 3 | ad3antrrr 492 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ ℕ) → 𝐹:ℕ⟶{0, 1}) | 
| 28 | 27, 16 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) ∈ {0, 1}) | 
| 29 | 26, 28 | sselid 3181 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) ∈ ℝ) | 
| 30 | 22, 29 | remulcld 8057 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) | 
| 31 | 11, 15, 16, 30 | fvmptd3 5655 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) | 
| 32 | 30 | recnd 8055 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℂ) | 
| 33 | 3, 11 | trilpolemclim 15680 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 /
(2↑𝑛)) · (𝐹‘𝑛)))) ∈ dom ⇝ ) | 
| 34 | 33 | ad2antrr 488 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))) ∈ dom ⇝ ) | 
| 35 | 7, 8, 10, 31, 32, 34 | isumsplit 11656 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)))) | 
| 36 | 9 | nncnd 9004 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 𝑥 ∈ ℂ) | 
| 37 |   | 1cnd 8042 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 1 ∈
ℂ) | 
| 38 | 36, 37 | pncand 8338 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → ((𝑥 + 1) − 1) = 𝑥) | 
| 39 | 38 | oveq2d 5938 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (1...((𝑥 + 1) − 1)) = (1...𝑥)) | 
| 40 | 9, 7 | eleqtrdi 2289 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 𝑥 ∈
(ℤ≥‘1)) | 
| 41 |   | fzisfzounsn 10312 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈
(ℤ≥‘1) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥})) | 
| 42 | 40, 41 | syl 14 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥})) | 
| 43 | 39, 42 | eqtrd 2229 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (1...((𝑥 + 1) − 1)) = ((1..^𝑥) ∪ {𝑥})) | 
| 44 | 43 | sumeq1d 11531 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)) = Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐹‘𝑖))) | 
| 45 |   | nfv 1542 | 
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑖((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) | 
| 46 |   | nfcv 2339 | 
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑖((1 /
(2↑𝑥)) · (𝐹‘𝑥)) | 
| 47 |   | 1zzd 9353 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 1 ∈
ℤ) | 
| 48 | 9 | nnzd 9447 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 𝑥 ∈ ℤ) | 
| 49 |   | fzofig 10524 | 
. . . . . . . . . . . . . . . . 17
⊢ ((1
∈ ℤ ∧ 𝑥
∈ ℤ) → (1..^𝑥) ∈ Fin) | 
| 50 | 47, 48, 49 | syl2anc 411 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (1..^𝑥) ∈ Fin) | 
| 51 |   | fzonel 10236 | 
. . . . . . . . . . . . . . . . 17
⊢  ¬
𝑥 ∈ (1..^𝑥) | 
| 52 | 51 | a1i 9 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → ¬ 𝑥 ∈ (1..^𝑥)) | 
| 53 | 17 | a1i 9 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → 2 ∈
ℝ+) | 
| 54 |   | elfzoelz 10222 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (1..^𝑥) → 𝑖 ∈ ℤ) | 
| 55 | 54 | adantl 277 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → 𝑖 ∈ ℤ) | 
| 56 | 53, 55 | rpexpcld 10789 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (2↑𝑖) ∈
ℝ+) | 
| 57 | 56 | rpreccld 9782 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (1 / (2↑𝑖)) ∈
ℝ+) | 
| 58 | 57 | rpred 9771 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (1 / (2↑𝑖)) ∈ ℝ) | 
| 59 |   | elfzouz 10226 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (1..^𝑥) → 𝑖 ∈
(ℤ≥‘1)) | 
| 60 | 59, 7 | eleqtrrdi 2290 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (1..^𝑥) → 𝑖 ∈ ℕ) | 
| 61 | 60, 29 | sylan2 286 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (𝐹‘𝑖) ∈ ℝ) | 
| 62 | 58, 61 | remulcld 8057 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) | 
| 63 | 62 | recnd 8055 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℂ) | 
| 64 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑥 → (2↑𝑖) = (2↑𝑥)) | 
| 65 | 64 | oveq2d 5938 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑥 → (1 / (2↑𝑖)) = (1 / (2↑𝑥))) | 
| 66 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑥 → (𝐹‘𝑖) = (𝐹‘𝑥)) | 
| 67 | 65, 66 | oveq12d 5940 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑥 → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = ((1 / (2↑𝑥)) · (𝐹‘𝑥))) | 
| 68 | 17 | a1i 9 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 2 ∈
ℝ+) | 
| 69 | 68, 48 | rpexpcld 10789 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (2↑𝑥) ∈
ℝ+) | 
| 70 | 69 | rpreccld 9782 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (1 / (2↑𝑥)) ∈
ℝ+) | 
| 71 | 70 | rpred 9771 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (1 / (2↑𝑥)) ∈ ℝ) | 
| 72 | 3 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 𝐹:ℕ⟶{0, 1}) | 
| 73 | 72, 9 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (𝐹‘𝑥) ∈ {0, 1}) | 
| 74 | 26, 73 | sselid 3181 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (𝐹‘𝑥) ∈ ℝ) | 
| 75 | 71, 74 | remulcld 8057 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → ((1 / (2↑𝑥)) · (𝐹‘𝑥)) ∈ ℝ) | 
| 76 | 75 | recnd 8055 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → ((1 / (2↑𝑥)) · (𝐹‘𝑥)) ∈ ℂ) | 
| 77 | 45, 46, 50, 9, 52, 63, 67, 76 | fsumsplitsn 11575 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐹‘𝑖)) = (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹‘𝑖)) + ((1 / (2↑𝑥)) · (𝐹‘𝑥)))) | 
| 78 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (𝐹‘𝑥) = 0) | 
| 79 | 78 | oveq2d 5938 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → ((1 / (2↑𝑥)) · (𝐹‘𝑥)) = ((1 / (2↑𝑥)) · 0)) | 
| 80 | 70 | rpcnd 9773 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (1 / (2↑𝑥)) ∈ ℂ) | 
| 81 | 80 | mul01d 8419 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → ((1 / (2↑𝑥)) · 0) =
0) | 
| 82 | 79, 81 | eqtrd 2229 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → ((1 / (2↑𝑥)) · (𝐹‘𝑥)) = 0) | 
| 83 | 82 | oveq2d 5938 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹‘𝑖)) + ((1 / (2↑𝑥)) · (𝐹‘𝑥))) = (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹‘𝑖)) + 0)) | 
| 84 | 44, 77, 83 | 3eqtrd 2233 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)) = (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹‘𝑖)) + 0)) | 
| 85 | 84 | oveq1d 5937 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖))) = ((Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹‘𝑖)) + 0) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)))) | 
| 86 | 35, 85 | eqtrd 2229 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = ((Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹‘𝑖)) + 0) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)))) | 
| 87 | 50, 62 | fsumrecl 11566 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) | 
| 88 |   | 0red 8027 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 0 ∈
ℝ) | 
| 89 | 87, 88 | readdcld 8056 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹‘𝑖)) + 0) ∈ ℝ) | 
| 90 | 10 | nnzd 9447 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (𝑥 + 1) ∈ ℤ) | 
| 91 |   | eluznn 9674 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 + 1) ∈ ℕ ∧ 𝑖 ∈
(ℤ≥‘(𝑥 + 1))) → 𝑖 ∈ ℕ) | 
| 92 | 10, 91 | sylan 283 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → 𝑖 ∈
ℕ) | 
| 93 | 92, 30 | syldan 282 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → ((1 /
(2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) | 
| 94 | 11, 15, 92, 93 | fvmptd3 5655 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → ((𝑛 ∈ ℕ ↦ ((1 /
(2↑𝑛)) · (𝐹‘𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) | 
| 95 | 31, 32 | eqeltrd 2273 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))‘𝑖) ∈ ℂ) | 
| 96 | 7, 10, 95 | iserex 11504 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))) ∈ dom ⇝ ↔ seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))) ∈ dom ⇝ )) | 
| 97 | 34, 96 | mpbid 147 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))) ∈ dom ⇝ ) | 
| 98 | 8, 90, 94, 93, 97 | isumrecl 11594 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) | 
| 99 | 50, 58 | fsumrecl 11566 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) ∈ ℝ) | 
| 100 | 99, 71 | readdcld 8056 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))) ∈ ℝ) | 
| 101 |   | eqid 2196 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ ↦ (1 /
(2↑𝑛))) = (𝑛 ∈ ℕ ↦ (1 /
(2↑𝑛))) | 
| 102 | 92, 21 | syldan 282 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → (1 /
(2↑𝑖)) ∈
ℝ+) | 
| 103 | 101, 13, 92, 102 | fvmptd3 5655 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → ((𝑛 ∈ ℕ ↦ (1 /
(2↑𝑛)))‘𝑖) = (1 / (2↑𝑖))) | 
| 104 | 92, 22 | syldan 282 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (ℤ≥‘(𝑥 + 1))) → (1 /
(2↑𝑖)) ∈
ℝ) | 
| 105 |   | seqex 10541 | 
. . . . . . . . . . . . . . . . 17
⊢ seq1( + ,
(𝑛 ∈ ℕ ↦
(1 / (2↑𝑛)))) ∈
V | 
| 106 |   | ax-1cn 7972 | 
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℂ | 
| 107 | 101 | geo2lim 11681 | 
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
ℂ → seq1( + , (𝑛
∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ 1) | 
| 108 | 106, 107 | ax-mp 5 | 
. . . . . . . . . . . . . . . . 17
⊢ seq1( + ,
(𝑛 ∈ ℕ ↦
(1 / (2↑𝑛)))) ⇝
1 | 
| 109 |   | breldmg 4872 | 
. . . . . . . . . . . . . . . . 17
⊢ ((seq1( +
, (𝑛 ∈ ℕ ↦
(1 / (2↑𝑛)))) ∈ V
∧ 1 ∈ ℂ ∧ seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ 1) → seq1( + ,
(𝑛 ∈ ℕ ↦
(1 / (2↑𝑛)))) ∈
dom ⇝ ) | 
| 110 | 105, 106,
108, 109 | mp3an 1348 | 
. . . . . . . . . . . . . . . 16
⊢ seq1( + ,
(𝑛 ∈ ℕ ↦
(1 / (2↑𝑛)))) ∈
dom ⇝ | 
| 111 | 110 | a1i 9 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝
) | 
| 112 | 101, 13, 16, 21 | fvmptd3 5655 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) = (1 / (2↑𝑖))) | 
| 113 | 21 | rpcnd 9773 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈
ℂ) | 
| 114 | 112, 113 | eqeltrd 2273 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) ∈ ℂ) | 
| 115 | 7, 10, 114 | iserex 11504 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ ↔
seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ (1 /
(2↑𝑛)))) ∈ dom
⇝ )) | 
| 116 | 111, 115 | mpbid 147 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝
) | 
| 117 | 8, 90, 103, 104, 116 | isumrecl 11594 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))(1 / (2↑𝑖)) ∈
ℝ) | 
| 118 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹‘𝑖) = 0) → (𝐹‘𝑖) = 0) | 
| 119 | 118 | oveq2d 5938 | 
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹‘𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = ((1 / (2↑𝑖)) · 0)) | 
| 120 | 57 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹‘𝑖) = 0) → (1 / (2↑𝑖)) ∈
ℝ+) | 
| 121 | 120 | rpcnd 9773 | 
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹‘𝑖) = 0) → (1 / (2↑𝑖)) ∈ ℂ) | 
| 122 | 121 | mul01d 8419 | 
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹‘𝑖) = 0) → ((1 / (2↑𝑖)) · 0) =
0) | 
| 123 | 119, 122 | eqtrd 2229 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹‘𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = 0) | 
| 124 | 120 | rpge0d 9775 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹‘𝑖) = 0) → 0 ≤ (1 / (2↑𝑖))) | 
| 125 | 123, 124 | eqbrtrd 4055 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹‘𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ≤ (1 / (2↑𝑖))) | 
| 126 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹‘𝑖) = 1) → (𝐹‘𝑖) = 1) | 
| 127 | 126 | oveq2d 5938 | 
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹‘𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = ((1 / (2↑𝑖)) · 1)) | 
| 128 | 58 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹‘𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℝ) | 
| 129 | 128 | recnd 8055 | 
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹‘𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℂ) | 
| 130 | 129 | mulridd 8043 | 
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹‘𝑖) = 1) → ((1 / (2↑𝑖)) · 1) = (1 /
(2↑𝑖))) | 
| 131 | 127, 130 | eqtrd 2229 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹‘𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = (1 / (2↑𝑖))) | 
| 132 | 128 | leidd 8541 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹‘𝑖) = 1) → (1 / (2↑𝑖)) ≤ (1 / (2↑𝑖))) | 
| 133 | 131, 132 | eqbrtrd 4055 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹‘𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ≤ (1 / (2↑𝑖))) | 
| 134 | 72 | adantr 276 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → 𝐹:ℕ⟶{0, 1}) | 
| 135 | 60 | adantl 277 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → 𝑖 ∈ ℕ) | 
| 136 | 134, 135 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (𝐹‘𝑖) ∈ {0, 1}) | 
| 137 |   | elpri 3645 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑖) ∈ {0, 1} → ((𝐹‘𝑖) = 0 ∨ (𝐹‘𝑖) = 1)) | 
| 138 | 136, 137 | syl 14 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → ((𝐹‘𝑖) = 0 ∨ (𝐹‘𝑖) = 1)) | 
| 139 | 125, 133,
138 | mpjaodan 799 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ≤ (1 / (2↑𝑖))) | 
| 140 | 50, 62, 58, 139 | fsumle 11628 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹‘𝑖)) ≤ Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖))) | 
| 141 | 70 | rpgt0d 9774 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 0 < (1 / (2↑𝑥))) | 
| 142 | 87, 88, 99, 71, 140, 141 | leltaddd 8593 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹‘𝑖)) + 0) < (Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥)))) | 
| 143 | 72, 4, 8, 10 | trilpolemisumle 15682 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖)) ≤ Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))(1 / (2↑𝑖))) | 
| 144 | 89, 98, 100, 117, 142, 143 | ltleaddd 8592 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → ((Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹‘𝑖)) + 0) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹‘𝑖))) < ((Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))(1 / (2↑𝑖)))) | 
| 145 | 86, 144 | eqbrtrd 4055 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) < ((Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))(1 / (2↑𝑖)))) | 
| 146 | 4, 145 | eqbrtrid 4068 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 𝐴 < ((Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))(1 / (2↑𝑖)))) | 
| 147 |   | nfcv 2339 | 
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(1 /
(2↑𝑥)) | 
| 148 | 57 | rpcnd 9773 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (1 / (2↑𝑖)) ∈ ℂ) | 
| 149 | 45, 147, 50, 9, 52, 148, 65, 80 | fsumsplitsn 11575 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})(1 / (2↑𝑖)) = (Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥)))) | 
| 150 | 149 | oveq1d 5937 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))(1 / (2↑𝑖))) = ((Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))(1 / (2↑𝑖)))) | 
| 151 | 146, 150 | breqtrrd 4061 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 𝐴 < (Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))(1 / (2↑𝑖)))) | 
| 152 | 42 | sumeq1d 11531 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖)) = Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})(1 / (2↑𝑖))) | 
| 153 | 152 | oveq1d 5937 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))(1 / (2↑𝑖))) = (Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))(1 / (2↑𝑖)))) | 
| 154 | 151, 153 | breqtrrd 4061 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 𝐴 < (Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))(1 / (2↑𝑖)))) | 
| 155 | 7, 8, 10, 112, 113, 111 | isumsplit 11656 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → Σ𝑖 ∈ ℕ (1 / (2↑𝑖)) = (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))(1 / (2↑𝑖)))) | 
| 156 | 39 | sumeq1d 11531 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))(1 / (2↑𝑖)) = Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖))) | 
| 157 | 156 | oveq1d 5937 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))(1 / (2↑𝑖))) = (Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))(1 / (2↑𝑖)))) | 
| 158 | 155, 157 | eqtrd 2229 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → Σ𝑖 ∈ ℕ (1 / (2↑𝑖)) = (Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ≥‘(𝑥 + 1))(1 / (2↑𝑖)))) | 
| 159 | 154, 158 | breqtrrd 4061 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 𝐴 < Σ𝑖 ∈ ℕ (1 / (2↑𝑖))) | 
| 160 |   | geoihalfsum 11687 | 
. . . . . . 7
⊢
Σ𝑖 ∈
ℕ (1 / (2↑𝑖)) =
1 | 
| 161 | 159, 160 | breqtrdi 4074 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 𝐴 < 1) | 
| 162 | 6, 161 | ltned 8140 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → 𝐴 ≠ 1) | 
| 163 | 162 | neneqd 2388 | 
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ (𝐹‘𝑥) = 0) → ¬ 𝐴 = 1) | 
| 164 | 2, 163 | pm2.65da 662 | 
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → ¬ (𝐹‘𝑥) = 0) | 
| 165 | 3 | ffvelcdmda 5697 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (𝐹‘𝑥) ∈ {0, 1}) | 
| 166 |   | elpri 3645 | 
. . . . 5
⊢ ((𝐹‘𝑥) ∈ {0, 1} → ((𝐹‘𝑥) = 0 ∨ (𝐹‘𝑥) = 1)) | 
| 167 | 165, 166 | syl 14 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → ((𝐹‘𝑥) = 0 ∨ (𝐹‘𝑥) = 1)) | 
| 168 | 167 | orcomd 730 | 
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → ((𝐹‘𝑥) = 1 ∨ (𝐹‘𝑥) = 0)) | 
| 169 | 164, 168 | ecased 1360 | 
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (𝐹‘𝑥) = 1) | 
| 170 | 169 | ralrimiva 2570 | 
1
⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) |