Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemeq1 GIF version

Theorem trilpolemeq1 12925
Description: Lemma for trilpo 12928. The 𝐴 = 1 case. This is proved by noting that if any (𝐹𝑥) is zero, then the infinite sum 𝐴 is less than one based on the term which is zero. We are using the fact that the 𝐹 sequence is decidable (in the sense that each element is either zero or one). (Contributed by Jim Kingdon, 23-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f (𝜑𝐹:ℕ⟶{0, 1})
trilpolemgt1.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
trilpolemeq1.a (𝜑𝐴 = 1)
Assertion
Ref Expression
trilpolemeq1 (𝜑 → ∀𝑥 ∈ ℕ (𝐹𝑥) = 1)
Distinct variable groups:   𝑖,𝐹   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑖)   𝐹(𝑥)

Proof of Theorem trilpolemeq1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 trilpolemeq1.a . . . . 5 (𝜑𝐴 = 1)
21ad2antrr 477 . . . 4 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐴 = 1)
3 trilpolemgt1.f . . . . . . . 8 (𝜑𝐹:ℕ⟶{0, 1})
4 trilpolemgt1.a . . . . . . . 8 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
53, 4trilpolemcl 12922 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
65ad2antrr 477 . . . . . 6 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐴 ∈ ℝ)
7 nnuz 9263 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
8 eqid 2115 . . . . . . . . . . . . . 14 (ℤ‘(𝑥 + 1)) = (ℤ‘(𝑥 + 1))
9 simplr 502 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝑥 ∈ ℕ)
109peano2nnd 8645 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (𝑥 + 1) ∈ ℕ)
11 eqid 2115 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))
12 oveq2 5736 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖))
1312oveq2d 5744 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖)))
14 fveq2 5375 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
1513, 14oveq12d 5746 . . . . . . . . . . . . . . 15 (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐹𝑛)) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
16 simpr 109 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
17 2rp 9348 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ+
1817a1i 9 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → 2 ∈ ℝ+)
1916nnzd 9076 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
2018, 19rpexpcld 10341 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+)
2120rpreccld 9393 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ+)
2221rpred 9382 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
23 0re 7690 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
24 1re 7689 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
25 prssi 3644 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
2623, 24, 25mp2an 420 . . . . . . . . . . . . . . . . 17 {0, 1} ⊆ ℝ
273ad3antrrr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → 𝐹:ℕ⟶{0, 1})
2827, 16ffvelrnd 5510 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ {0, 1})
2926, 28sseldi 3061 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ)
3022, 29remulcld 7720 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
3111, 15, 16, 30fvmptd3 5468 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
3230recnd 7718 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℂ)
333, 11trilpolemclim 12921 . . . . . . . . . . . . . . 15 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
3433ad2antrr 477 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
357, 8, 10, 31, 32, 34isumsplit 11152 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖)) = (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
369nncnd 8644 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝑥 ∈ ℂ)
37 1cnd 7706 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 1 ∈ ℂ)
3836, 37pncand 7997 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ((𝑥 + 1) − 1) = 𝑥)
3938oveq2d 5744 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (1...((𝑥 + 1) − 1)) = (1...𝑥))
409, 7syl6eleq 2207 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝑥 ∈ (ℤ‘1))
41 fzisfzounsn 9906 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℤ‘1) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥}))
4240, 41syl 14 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (1...𝑥) = ((1..^𝑥) ∪ {𝑥}))
4339, 42eqtrd 2147 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (1...((𝑥 + 1) − 1)) = ((1..^𝑥) ∪ {𝑥}))
4443sumeq1d 11027 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) = Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐹𝑖)))
45 nfv 1491 . . . . . . . . . . . . . . . 16 𝑖((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0)
46 nfcv 2255 . . . . . . . . . . . . . . . 16 𝑖((1 / (2↑𝑥)) · (𝐹𝑥))
47 1zzd 8985 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 1 ∈ ℤ)
489nnzd 9076 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝑥 ∈ ℤ)
49 fzofig 10098 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (1..^𝑥) ∈ Fin)
5047, 48, 49syl2anc 406 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (1..^𝑥) ∈ Fin)
51 fzonel 9830 . . . . . . . . . . . . . . . . 17 ¬ 𝑥 ∈ (1..^𝑥)
5251a1i 9 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ¬ 𝑥 ∈ (1..^𝑥))
5317a1i 9 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → 2 ∈ ℝ+)
54 elfzoelz 9817 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (1..^𝑥) → 𝑖 ∈ ℤ)
5554adantl 273 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → 𝑖 ∈ ℤ)
5653, 55rpexpcld 10341 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (2↑𝑖) ∈ ℝ+)
5756rpreccld 9393 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (1 / (2↑𝑖)) ∈ ℝ+)
5857rpred 9382 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (1 / (2↑𝑖)) ∈ ℝ)
59 elfzouz 9821 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (1..^𝑥) → 𝑖 ∈ (ℤ‘1))
6059, 7syl6eleqr 2208 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (1..^𝑥) → 𝑖 ∈ ℕ)
6160, 29sylan2 282 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (𝐹𝑖) ∈ ℝ)
6258, 61remulcld 7720 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
6362recnd 7718 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℂ)
64 oveq2 5736 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑥 → (2↑𝑖) = (2↑𝑥))
6564oveq2d 5744 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑥 → (1 / (2↑𝑖)) = (1 / (2↑𝑥)))
66 fveq2 5375 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑥 → (𝐹𝑖) = (𝐹𝑥))
6765, 66oveq12d 5746 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑥 → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑥)) · (𝐹𝑥)))
6817a1i 9 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 2 ∈ ℝ+)
6968, 48rpexpcld 10341 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (2↑𝑥) ∈ ℝ+)
7069rpreccld 9393 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (1 / (2↑𝑥)) ∈ ℝ+)
7170rpred 9382 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (1 / (2↑𝑥)) ∈ ℝ)
723ad2antrr 477 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐹:ℕ⟶{0, 1})
7372, 9ffvelrnd 5510 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (𝐹𝑥) ∈ {0, 1})
7426, 73sseldi 3061 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (𝐹𝑥) ∈ ℝ)
7571, 74remulcld 7720 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ((1 / (2↑𝑥)) · (𝐹𝑥)) ∈ ℝ)
7675recnd 7718 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ((1 / (2↑𝑥)) · (𝐹𝑥)) ∈ ℂ)
7745, 46, 50, 9, 52, 63, 67, 76fsumsplitsn 11071 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})((1 / (2↑𝑖)) · (𝐹𝑖)) = (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + ((1 / (2↑𝑥)) · (𝐹𝑥))))
78 simpr 109 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (𝐹𝑥) = 0)
7978oveq2d 5744 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ((1 / (2↑𝑥)) · (𝐹𝑥)) = ((1 / (2↑𝑥)) · 0))
8070rpcnd 9384 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (1 / (2↑𝑥)) ∈ ℂ)
8180mul01d 8074 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ((1 / (2↑𝑥)) · 0) = 0)
8279, 81eqtrd 2147 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ((1 / (2↑𝑥)) · (𝐹𝑥)) = 0)
8382oveq2d 5744 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + ((1 / (2↑𝑥)) · (𝐹𝑥))) = (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + 0))
8444, 77, 833eqtrd 2151 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) = (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + 0))
8584oveq1d 5743 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))((1 / (2↑𝑖)) · (𝐹𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))) = ((Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + 0) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
8635, 85eqtrd 2147 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + 0) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))))
8750, 62fsumrecl 11062 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
88 0red 7691 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 0 ∈ ℝ)
8987, 88readdcld 7719 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + 0) ∈ ℝ)
9010nnzd 9076 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (𝑥 + 1) ∈ ℤ)
91 eluznn 9296 . . . . . . . . . . . . . . . 16 (((𝑥 + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 𝑖 ∈ ℕ)
9210, 91sylan 279 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → 𝑖 ∈ ℕ)
9392, 30syldan 278 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
9411, 15, 92, 93fvmptd3 5468 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
9531, 32eqeltrd 2191 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) ∈ ℂ)
967, 10, 95iserex 11000 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ ↔ seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ ))
9734, 96mpbid 146 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
988, 90, 94, 93, 97isumrecl 11090 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
9950, 58fsumrecl 11062 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) ∈ ℝ)
10099, 71readdcld 7719 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))) ∈ ℝ)
101 eqid 2115 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛))) = (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))
10292, 21syldan 278 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (1 / (2↑𝑖)) ∈ ℝ+)
103101, 13, 92, 102fvmptd3 5468 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) = (1 / (2↑𝑖)))
10492, 22syldan 278 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (ℤ‘(𝑥 + 1))) → (1 / (2↑𝑖)) ∈ ℝ)
105 seqex 10113 . . . . . . . . . . . . . . . . 17 seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ V
106 ax-1cn 7638 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
107101geo2lim 11177 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℂ → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ 1)
108106, 107ax-mp 7 . . . . . . . . . . . . . . . . 17 seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ 1
109 breldmg 4705 . . . . . . . . . . . . . . . . 17 ((seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ V ∧ 1 ∈ ℂ ∧ seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ 1) → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
110105, 106, 108, 109mp3an 1298 . . . . . . . . . . . . . . . 16 seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝
111110a1i 9 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
112101, 13, 16, 21fvmptd3 5468 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) = (1 / (2↑𝑖)))
11321rpcnd 9384 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℂ)
114112, 113eqeltrd 2191 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) ∈ ℂ)
1157, 10, 114iserex 11000 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ ↔ seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ ))
116111, 115mpbid 146 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → seq(𝑥 + 1)( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
1178, 90, 103, 104, 116isumrecl 11090 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖)) ∈ ℝ)
118 simpr 109 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 0) → (𝐹𝑖) = 0)
119118oveq2d 5744 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑖)) · 0))
12057adantr 272 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 0) → (1 / (2↑𝑖)) ∈ ℝ+)
121120rpcnd 9384 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 0) → (1 / (2↑𝑖)) ∈ ℂ)
122121mul01d 8074 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · 0) = 0)
123119, 122eqtrd 2147 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = 0)
124120rpge0d 9386 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 0) → 0 ≤ (1 / (2↑𝑖)))
125123, 124eqbrtrd 3915 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
126 simpr 109 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 1) → (𝐹𝑖) = 1)
127126oveq2d 5744 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑖)) · 1))
12858adantr 272 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℝ)
129128recnd 7718 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℂ)
130129mulid1d 7707 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · 1) = (1 / (2↑𝑖)))
131127, 130eqtrd 2147 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = (1 / (2↑𝑖)))
132128leidd 8195 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ≤ (1 / (2↑𝑖)))
133131, 132eqbrtrd 3915 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
13472adantr 272 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → 𝐹:ℕ⟶{0, 1})
13560adantl 273 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → 𝑖 ∈ ℕ)
136134, 135ffvelrnd 5510 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (𝐹𝑖) ∈ {0, 1})
137 elpri 3516 . . . . . . . . . . . . . . . . 17 ((𝐹𝑖) ∈ {0, 1} → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
138136, 137syl 14 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
139125, 133, 138mpjaodan 770 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
14050, 62, 58, 139fsumle 11124 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)))
14170rpgt0d 9385 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 0 < (1 / (2↑𝑥)))
14287, 88, 99, 71, 140, 141leltaddd 8246 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + 0) < (Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))))
14372, 4, 8, 10trilpolemisumle 12923 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖)))
14489, 98, 100, 117, 142, 143ltleaddd 8245 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ((Σ𝑖 ∈ (1..^𝑥)((1 / (2↑𝑖)) · (𝐹𝑖)) + 0) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))((1 / (2↑𝑖)) · (𝐹𝑖))) < ((Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
14586, 144eqbrtrd 3915 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖)) < ((Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
1464, 145eqbrtrid 3928 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐴 < ((Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
147 nfcv 2255 . . . . . . . . . . . 12 𝑖(1 / (2↑𝑥))
14857rpcnd 9384 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) ∧ 𝑖 ∈ (1..^𝑥)) → (1 / (2↑𝑖)) ∈ ℂ)
14945, 147, 50, 9, 52, 148, 65, 80fsumsplitsn 11071 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})(1 / (2↑𝑖)) = (Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))))
150149oveq1d 5743 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))) = ((Σ𝑖 ∈ (1..^𝑥)(1 / (2↑𝑖)) + (1 / (2↑𝑥))) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
151146, 150breqtrrd 3921 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐴 < (Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
15242sumeq1d 11027 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖)) = Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})(1 / (2↑𝑖)))
153152oveq1d 5743 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))) = (Σ𝑖 ∈ ((1..^𝑥) ∪ {𝑥})(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
154151, 153breqtrrd 3921 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐴 < (Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
1557, 8, 10, 112, 113, 111isumsplit 11152 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ ℕ (1 / (2↑𝑖)) = (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
15639sumeq1d 11027 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ (1...((𝑥 + 1) − 1))(1 / (2↑𝑖)) = Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖)))
157156oveq1d 5743 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → (Σ𝑖 ∈ (1...((𝑥 + 1) − 1))(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))) = (Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
158155, 157eqtrd 2147 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → Σ𝑖 ∈ ℕ (1 / (2↑𝑖)) = (Σ𝑖 ∈ (1...𝑥)(1 / (2↑𝑖)) + Σ𝑖 ∈ (ℤ‘(𝑥 + 1))(1 / (2↑𝑖))))
159154, 158breqtrrd 3921 . . . . . . 7 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐴 < Σ𝑖 ∈ ℕ (1 / (2↑𝑖)))
160 geoihalfsum 11183 . . . . . . 7 Σ𝑖 ∈ ℕ (1 / (2↑𝑖)) = 1
161159, 160syl6breq 3934 . . . . . 6 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐴 < 1)
1626, 161ltned 7800 . . . . 5 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → 𝐴 ≠ 1)
163162neneqd 2303 . . . 4 (((𝜑𝑥 ∈ ℕ) ∧ (𝐹𝑥) = 0) → ¬ 𝐴 = 1)
1642, 163pm2.65da 633 . . 3 ((𝜑𝑥 ∈ ℕ) → ¬ (𝐹𝑥) = 0)
1653ffvelrnda 5509 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ {0, 1})
166 elpri 3516 . . . . 5 ((𝐹𝑥) ∈ {0, 1} → ((𝐹𝑥) = 0 ∨ (𝐹𝑥) = 1))
167165, 166syl 14 . . . 4 ((𝜑𝑥 ∈ ℕ) → ((𝐹𝑥) = 0 ∨ (𝐹𝑥) = 1))
168167orcomd 701 . . 3 ((𝜑𝑥 ∈ ℕ) → ((𝐹𝑥) = 1 ∨ (𝐹𝑥) = 0))
169164, 168ecased 1310 . 2 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) = 1)
170169ralrimiva 2479 1 (𝜑 → ∀𝑥 ∈ ℕ (𝐹𝑥) = 1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 680   = wceq 1314  wcel 1463  wral 2390  Vcvv 2657  cun 3035  wss 3037  {csn 3493  {cpr 3494   class class class wbr 3895  cmpt 3949  dom cdm 4499  wf 5077  cfv 5081  (class class class)co 5728  Fincfn 6588  cc 7545  cr 7546  0cc0 7547  1c1 7548   + caddc 7550   · cmul 7552   < clt 7724  cle 7725  cmin 7856   / cdiv 8345  cn 8630  2c2 8681  cz 8958  cuz 9228  +crp 9343  ...cfz 9683  ..^cfzo 9812  seqcseq 10111  cexp 10185  cli 10939  Σcsu 11014
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663  ax-arch 7664  ax-caucvg 7665
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-isom 5090  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-frec 6242  df-1o 6267  df-oadd 6271  df-er 6383  df-en 6589  df-dom 6590  df-fin 6591  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-2 8689  df-3 8690  df-4 8691  df-n0 8882  df-z 8959  df-uz 9229  df-q 9314  df-rp 9344  df-ico 9570  df-fz 9684  df-fzo 9813  df-seqfrec 10112  df-exp 10186  df-ihash 10415  df-cj 10507  df-re 10508  df-im 10509  df-rsqrt 10662  df-abs 10663  df-clim 10940  df-sumdc 11015
This theorem is referenced by:  trilpolemres  12927
  Copyright terms: Public domain W3C validator