Proof of Theorem logbgcd1irraplemexp
| Step | Hyp | Ref
 | Expression | 
| 1 |   | logbgcd1irraplem.rp | 
. . . . . . . 8
⊢ (𝜑 → (𝑋 gcd 𝐵) = 1) | 
| 2 |   | logbgcd1irraplem.x | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈
(ℤ≥‘2)) | 
| 3 |   | eluz2nn 9640 | 
. . . . . . . . . 10
⊢ (𝑋 ∈
(ℤ≥‘2) → 𝑋 ∈ ℕ) | 
| 4 | 2, 3 | syl 14 | 
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ ℕ) | 
| 5 |   | logbgcd1irraplem.b | 
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈
(ℤ≥‘2)) | 
| 6 |   | eluz2nn 9640 | 
. . . . . . . . . 10
⊢ (𝐵 ∈
(ℤ≥‘2) → 𝐵 ∈ ℕ) | 
| 7 | 5, 6 | syl 14 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℕ) | 
| 8 |   | logbgcd1irraplem.n | 
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 9 |   | rplpwr 12194 | 
. . . . . . . . 9
⊢ ((𝑋 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝐵) = 1 → ((𝑋↑𝑁) gcd 𝐵) = 1)) | 
| 10 | 4, 7, 8, 9 | syl3anc 1249 | 
. . . . . . . 8
⊢ (𝜑 → ((𝑋 gcd 𝐵) = 1 → ((𝑋↑𝑁) gcd 𝐵) = 1)) | 
| 11 | 1, 10 | mpd 13 | 
. . . . . . 7
⊢ (𝜑 → ((𝑋↑𝑁) gcd 𝐵) = 1) | 
| 12 | 11 | ad2antrr 488 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 ∈ ℕ) ∧ (𝐵↑𝑀) = (𝑋↑𝑁)) → ((𝑋↑𝑁) gcd 𝐵) = 1) | 
| 13 |   | 1red 8041 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈
ℝ) | 
| 14 |   | eluz2gt1 9676 | 
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈
(ℤ≥‘2) → 1 < 𝐵) | 
| 15 | 5, 14 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 < 𝐵) | 
| 16 | 13, 15 | gtned 8139 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ≠ 1) | 
| 17 | 16 | neneqd 2388 | 
. . . . . . . . . . 11
⊢ (𝜑 → ¬ 𝐵 = 1) | 
| 18 | 7 | nnzd 9447 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ ℤ) | 
| 19 |   | gcdid 12153 | 
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ ℤ → (𝐵 gcd 𝐵) = (abs‘𝐵)) | 
| 20 | 18, 19 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 gcd 𝐵) = (abs‘𝐵)) | 
| 21 | 7 | nnred 9003 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 22 | 7 | nnnn0d 9302 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈
ℕ0) | 
| 23 | 22 | nn0ge0d 9305 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ≤ 𝐵) | 
| 24 | 21, 23 | absidd 11332 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (abs‘𝐵) = 𝐵) | 
| 25 | 20, 24 | eqtrd 2229 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐵 gcd 𝐵) = 𝐵) | 
| 26 | 25 | eqeq1d 2205 | 
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1)) | 
| 27 | 17, 26 | mtbird 674 | 
. . . . . . . . . 10
⊢ (𝜑 → ¬ (𝐵 gcd 𝐵) = 1) | 
| 28 | 27 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → ¬ (𝐵 gcd 𝐵) = 1) | 
| 29 | 18 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → 𝐵 ∈ ℤ) | 
| 30 |   | simpr 110 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ) | 
| 31 |   | rpexp 12321 | 
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (((𝐵↑𝑀) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1)) | 
| 32 | 29, 29, 30, 31 | syl3anc 1249 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (((𝐵↑𝑀) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1)) | 
| 33 | 28, 32 | mtbird 674 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → ¬ ((𝐵↑𝑀) gcd 𝐵) = 1) | 
| 34 | 33 | adantr 276 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑀 ∈ ℕ) ∧ (𝐵↑𝑀) = (𝑋↑𝑁)) → ¬ ((𝐵↑𝑀) gcd 𝐵) = 1) | 
| 35 |   | oveq1 5929 | 
. . . . . . . . . 10
⊢ ((𝑋↑𝑁) = (𝐵↑𝑀) → ((𝑋↑𝑁) gcd 𝐵) = ((𝐵↑𝑀) gcd 𝐵)) | 
| 36 | 35 | eqeq1d 2205 | 
. . . . . . . . 9
⊢ ((𝑋↑𝑁) = (𝐵↑𝑀) → (((𝑋↑𝑁) gcd 𝐵) = 1 ↔ ((𝐵↑𝑀) gcd 𝐵) = 1)) | 
| 37 | 36 | eqcoms 2199 | 
. . . . . . . 8
⊢ ((𝐵↑𝑀) = (𝑋↑𝑁) → (((𝑋↑𝑁) gcd 𝐵) = 1 ↔ ((𝐵↑𝑀) gcd 𝐵) = 1)) | 
| 38 | 37 | adantl 277 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑀 ∈ ℕ) ∧ (𝐵↑𝑀) = (𝑋↑𝑁)) → (((𝑋↑𝑁) gcd 𝐵) = 1 ↔ ((𝐵↑𝑀) gcd 𝐵) = 1)) | 
| 39 | 34, 38 | mtbird 674 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 ∈ ℕ) ∧ (𝐵↑𝑀) = (𝑋↑𝑁)) → ¬ ((𝑋↑𝑁) gcd 𝐵) = 1) | 
| 40 | 12, 39 | pm2.65da 662 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → ¬ (𝐵↑𝑀) = (𝑋↑𝑁)) | 
| 41 | 40 | neqcomd 2201 | 
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → ¬ (𝑋↑𝑁) = (𝐵↑𝑀)) | 
| 42 | 41 | neqned 2374 | 
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑋↑𝑁) ≠ (𝐵↑𝑀)) | 
| 43 | 4 | nnzd 9447 | 
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℤ) | 
| 44 | 43 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → 𝑋 ∈ ℤ) | 
| 45 | 8 | nnnn0d 9302 | 
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 46 | 45 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → 𝑁 ∈
ℕ0) | 
| 47 |   | zexpcl 10646 | 
. . . . 5
⊢ ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ (𝑋↑𝑁) ∈
ℤ) | 
| 48 | 44, 46, 47 | syl2anc 411 | 
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑋↑𝑁) ∈ ℤ) | 
| 49 | 30 | nnnn0d 9302 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → 𝑀 ∈
ℕ0) | 
| 50 |   | zexpcl 10646 | 
. . . . 5
⊢ ((𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝐵↑𝑀) ∈
ℤ) | 
| 51 | 29, 49, 50 | syl2anc 411 | 
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝐵↑𝑀) ∈ ℤ) | 
| 52 |   | zapne 9400 | 
. . . 4
⊢ (((𝑋↑𝑁) ∈ ℤ ∧ (𝐵↑𝑀) ∈ ℤ) → ((𝑋↑𝑁) # (𝐵↑𝑀) ↔ (𝑋↑𝑁) ≠ (𝐵↑𝑀))) | 
| 53 | 48, 51, 52 | syl2anc 411 | 
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → ((𝑋↑𝑁) # (𝐵↑𝑀) ↔ (𝑋↑𝑁) ≠ (𝐵↑𝑀))) | 
| 54 | 42, 53 | mpbird 167 | 
. 2
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑋↑𝑁) # (𝐵↑𝑀)) | 
| 55 | 7 | nnrpd 9769 | 
. . . . . 6
⊢ (𝜑 → 𝐵 ∈
ℝ+) | 
| 56 | 55 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 ∈
ℝ+) | 
| 57 |   | logbgcd1irraplem.m | 
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 58 | 57 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝑀 ∈
ℤ) | 
| 59 | 56, 58 | rpexpcld 10789 | 
. . . 4
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵↑𝑀) ∈
ℝ+) | 
| 60 | 59 | rpred 9771 | 
. . 3
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵↑𝑀) ∈ ℝ) | 
| 61 | 4 | nnred 9003 | 
. . . . 5
⊢ (𝜑 → 𝑋 ∈ ℝ) | 
| 62 | 61, 45 | reexpcld 10782 | 
. . . 4
⊢ (𝜑 → (𝑋↑𝑁) ∈ ℝ) | 
| 63 | 62 | adantr 276 | 
. . 3
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝑋↑𝑁) ∈ ℝ) | 
| 64 |   | 1red 8041 | 
. . . 4
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ∈
ℝ) | 
| 65 |   | 1rp 9732 | 
. . . . . . 7
⊢ 1 ∈
ℝ+ | 
| 66 | 65 | a1i 9 | 
. . . . . 6
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ∈
ℝ+) | 
| 67 | 21 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 ∈
ℝ) | 
| 68 |   | simpr 110 | 
. . . . . . . 8
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈
ℕ0) | 
| 69 | 7 | nnge1d 9033 | 
. . . . . . . . 9
⊢ (𝜑 → 1 ≤ 𝐵) | 
| 70 | 69 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ≤
𝐵) | 
| 71 | 67, 68, 70 | expge1d 10784 | 
. . . . . . 7
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ≤
(𝐵↑-𝑀)) | 
| 72 | 67 | recnd 8055 | 
. . . . . . . 8
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 ∈
ℂ) | 
| 73 | 7 | nnap0d 9036 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐵 # 0) | 
| 74 | 73 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 # 0) | 
| 75 | 72, 74, 58 | expnegapd 10772 | 
. . . . . . 7
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵↑-𝑀) = (1 / (𝐵↑𝑀))) | 
| 76 | 71, 75 | breqtrd 4059 | 
. . . . . 6
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ≤
(1 / (𝐵↑𝑀))) | 
| 77 | 66, 59, 76 | lerec2d 9793 | 
. . . . 5
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵↑𝑀) ≤ (1 / 1)) | 
| 78 |   | 1div1e1 8731 | 
. . . . 5
⊢ (1 / 1) =
1 | 
| 79 | 77, 78 | breqtrdi 4074 | 
. . . 4
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵↑𝑀) ≤ 1) | 
| 80 |   | eluz2gt1 9676 | 
. . . . . . 7
⊢ (𝑋 ∈
(ℤ≥‘2) → 1 < 𝑋) | 
| 81 | 2, 80 | syl 14 | 
. . . . . 6
⊢ (𝜑 → 1 < 𝑋) | 
| 82 |   | expgt1 10669 | 
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 <
𝑋) → 1 < (𝑋↑𝑁)) | 
| 83 | 61, 8, 81, 82 | syl3anc 1249 | 
. . . . 5
⊢ (𝜑 → 1 < (𝑋↑𝑁)) | 
| 84 | 83 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 <
(𝑋↑𝑁)) | 
| 85 | 60, 64, 63, 79, 84 | lelttrd 8151 | 
. . 3
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵↑𝑀) < (𝑋↑𝑁)) | 
| 86 | 60, 63, 85 | gtapd 8664 | 
. 2
⊢ ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝑋↑𝑁) # (𝐵↑𝑀)) | 
| 87 |   | elznn 9342 | 
. . . 4
⊢ (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ ∨ -𝑀 ∈
ℕ0))) | 
| 88 | 57, 87 | sylib 122 | 
. . 3
⊢ (𝜑 → (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ ∨ -𝑀 ∈
ℕ0))) | 
| 89 | 88 | simprd 114 | 
. 2
⊢ (𝜑 → (𝑀 ∈ ℕ ∨ -𝑀 ∈
ℕ0)) | 
| 90 | 54, 86, 89 | mpjaodan 799 | 
1
⊢ (𝜑 → (𝑋↑𝑁) # (𝐵↑𝑀)) |