ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irraplemexp GIF version

Theorem logbgcd1irraplemexp 15100
Description: Lemma for logbgcd1irrap 15102. Apartness of 𝑋𝑁 and 𝐵𝑀. (Contributed by Jim Kingdon, 11-Jul-2024.)
Hypotheses
Ref Expression
logbgcd1irraplem.x (𝜑𝑋 ∈ (ℤ‘2))
logbgcd1irraplem.b (𝜑𝐵 ∈ (ℤ‘2))
logbgcd1irraplem.rp (𝜑 → (𝑋 gcd 𝐵) = 1)
logbgcd1irraplem.m (𝜑𝑀 ∈ ℤ)
logbgcd1irraplem.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
logbgcd1irraplemexp (𝜑 → (𝑋𝑁) # (𝐵𝑀))

Proof of Theorem logbgcd1irraplemexp
StepHypRef Expression
1 logbgcd1irraplem.rp . . . . . . . 8 (𝜑 → (𝑋 gcd 𝐵) = 1)
2 logbgcd1irraplem.x . . . . . . . . . 10 (𝜑𝑋 ∈ (ℤ‘2))
3 eluz2nn 9631 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
42, 3syl 14 . . . . . . . . 9 (𝜑𝑋 ∈ ℕ)
5 logbgcd1irraplem.b . . . . . . . . . 10 (𝜑𝐵 ∈ (ℤ‘2))
6 eluz2nn 9631 . . . . . . . . . 10 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
75, 6syl 14 . . . . . . . . 9 (𝜑𝐵 ∈ ℕ)
8 logbgcd1irraplem.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
9 rplpwr 12164 . . . . . . . . 9 ((𝑋 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑁) gcd 𝐵) = 1))
104, 7, 8, 9syl3anc 1249 . . . . . . . 8 (𝜑 → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑁) gcd 𝐵) = 1))
111, 10mpd 13 . . . . . . 7 (𝜑 → ((𝑋𝑁) gcd 𝐵) = 1)
1211ad2antrr 488 . . . . . 6 (((𝜑𝑀 ∈ ℕ) ∧ (𝐵𝑀) = (𝑋𝑁)) → ((𝑋𝑁) gcd 𝐵) = 1)
13 1red 8034 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
14 eluz2gt1 9667 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
155, 14syl 14 . . . . . . . . . . . . 13 (𝜑 → 1 < 𝐵)
1613, 15gtned 8132 . . . . . . . . . . . 12 (𝜑𝐵 ≠ 1)
1716neneqd 2385 . . . . . . . . . . 11 (𝜑 → ¬ 𝐵 = 1)
187nnzd 9438 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℤ)
19 gcdid 12123 . . . . . . . . . . . . . 14 (𝐵 ∈ ℤ → (𝐵 gcd 𝐵) = (abs‘𝐵))
2018, 19syl 14 . . . . . . . . . . . . 13 (𝜑 → (𝐵 gcd 𝐵) = (abs‘𝐵))
217nnred 8995 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ)
227nnnn0d 9293 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℕ0)
2322nn0ge0d 9296 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 𝐵)
2421, 23absidd 11311 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝐵) = 𝐵)
2520, 24eqtrd 2226 . . . . . . . . . . . 12 (𝜑 → (𝐵 gcd 𝐵) = 𝐵)
2625eqeq1d 2202 . . . . . . . . . . 11 (𝜑 → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
2717, 26mtbird 674 . . . . . . . . . 10 (𝜑 → ¬ (𝐵 gcd 𝐵) = 1)
2827adantr 276 . . . . . . . . 9 ((𝜑𝑀 ∈ ℕ) → ¬ (𝐵 gcd 𝐵) = 1)
2918adantr 276 . . . . . . . . . 10 ((𝜑𝑀 ∈ ℕ) → 𝐵 ∈ ℤ)
30 simpr 110 . . . . . . . . . 10 ((𝜑𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
31 rpexp 12291 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (((𝐵𝑀) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
3229, 29, 30, 31syl3anc 1249 . . . . . . . . 9 ((𝜑𝑀 ∈ ℕ) → (((𝐵𝑀) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
3328, 32mtbird 674 . . . . . . . 8 ((𝜑𝑀 ∈ ℕ) → ¬ ((𝐵𝑀) gcd 𝐵) = 1)
3433adantr 276 . . . . . . 7 (((𝜑𝑀 ∈ ℕ) ∧ (𝐵𝑀) = (𝑋𝑁)) → ¬ ((𝐵𝑀) gcd 𝐵) = 1)
35 oveq1 5925 . . . . . . . . . 10 ((𝑋𝑁) = (𝐵𝑀) → ((𝑋𝑁) gcd 𝐵) = ((𝐵𝑀) gcd 𝐵))
3635eqeq1d 2202 . . . . . . . . 9 ((𝑋𝑁) = (𝐵𝑀) → (((𝑋𝑁) gcd 𝐵) = 1 ↔ ((𝐵𝑀) gcd 𝐵) = 1))
3736eqcoms 2196 . . . . . . . 8 ((𝐵𝑀) = (𝑋𝑁) → (((𝑋𝑁) gcd 𝐵) = 1 ↔ ((𝐵𝑀) gcd 𝐵) = 1))
3837adantl 277 . . . . . . 7 (((𝜑𝑀 ∈ ℕ) ∧ (𝐵𝑀) = (𝑋𝑁)) → (((𝑋𝑁) gcd 𝐵) = 1 ↔ ((𝐵𝑀) gcd 𝐵) = 1))
3934, 38mtbird 674 . . . . . 6 (((𝜑𝑀 ∈ ℕ) ∧ (𝐵𝑀) = (𝑋𝑁)) → ¬ ((𝑋𝑁) gcd 𝐵) = 1)
4012, 39pm2.65da 662 . . . . 5 ((𝜑𝑀 ∈ ℕ) → ¬ (𝐵𝑀) = (𝑋𝑁))
4140neqcomd 2198 . . . 4 ((𝜑𝑀 ∈ ℕ) → ¬ (𝑋𝑁) = (𝐵𝑀))
4241neqned 2371 . . 3 ((𝜑𝑀 ∈ ℕ) → (𝑋𝑁) ≠ (𝐵𝑀))
434nnzd 9438 . . . . . 6 (𝜑𝑋 ∈ ℤ)
4443adantr 276 . . . . 5 ((𝜑𝑀 ∈ ℕ) → 𝑋 ∈ ℤ)
458nnnn0d 9293 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
4645adantr 276 . . . . 5 ((𝜑𝑀 ∈ ℕ) → 𝑁 ∈ ℕ0)
47 zexpcl 10625 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑋𝑁) ∈ ℤ)
4844, 46, 47syl2anc 411 . . . 4 ((𝜑𝑀 ∈ ℕ) → (𝑋𝑁) ∈ ℤ)
4930nnnn0d 9293 . . . . 5 ((𝜑𝑀 ∈ ℕ) → 𝑀 ∈ ℕ0)
50 zexpcl 10625 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝐵𝑀) ∈ ℤ)
5129, 49, 50syl2anc 411 . . . 4 ((𝜑𝑀 ∈ ℕ) → (𝐵𝑀) ∈ ℤ)
52 zapne 9391 . . . 4 (((𝑋𝑁) ∈ ℤ ∧ (𝐵𝑀) ∈ ℤ) → ((𝑋𝑁) # (𝐵𝑀) ↔ (𝑋𝑁) ≠ (𝐵𝑀)))
5348, 51, 52syl2anc 411 . . 3 ((𝜑𝑀 ∈ ℕ) → ((𝑋𝑁) # (𝐵𝑀) ↔ (𝑋𝑁) ≠ (𝐵𝑀)))
5442, 53mpbird 167 . 2 ((𝜑𝑀 ∈ ℕ) → (𝑋𝑁) # (𝐵𝑀))
557nnrpd 9760 . . . . . 6 (𝜑𝐵 ∈ ℝ+)
5655adantr 276 . . . . 5 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 ∈ ℝ+)
57 logbgcd1irraplem.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
5857adantr 276 . . . . 5 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ)
5956, 58rpexpcld 10768 . . . 4 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) ∈ ℝ+)
6059rpred 9762 . . 3 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) ∈ ℝ)
614nnred 8995 . . . . 5 (𝜑𝑋 ∈ ℝ)
6261, 45reexpcld 10761 . . . 4 (𝜑 → (𝑋𝑁) ∈ ℝ)
6362adantr 276 . . 3 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝑋𝑁) ∈ ℝ)
64 1red 8034 . . . 4 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ∈ ℝ)
65 1rp 9723 . . . . . . 7 1 ∈ ℝ+
6665a1i 9 . . . . . 6 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ∈ ℝ+)
6721adantr 276 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 ∈ ℝ)
68 simpr 110 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℕ0)
697nnge1d 9025 . . . . . . . . 9 (𝜑 → 1 ≤ 𝐵)
7069adantr 276 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ≤ 𝐵)
7167, 68, 70expge1d 10763 . . . . . . 7 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ≤ (𝐵↑-𝑀))
7267recnd 8048 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 ∈ ℂ)
737nnap0d 9028 . . . . . . . . 9 (𝜑𝐵 # 0)
7473adantr 276 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 # 0)
7572, 74, 58expnegapd 10751 . . . . . . 7 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵↑-𝑀) = (1 / (𝐵𝑀)))
7671, 75breqtrd 4055 . . . . . 6 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ≤ (1 / (𝐵𝑀)))
7766, 59, 76lerec2d 9784 . . . . 5 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) ≤ (1 / 1))
78 1div1e1 8723 . . . . 5 (1 / 1) = 1
7977, 78breqtrdi 4070 . . . 4 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) ≤ 1)
80 eluz2gt1 9667 . . . . . . 7 (𝑋 ∈ (ℤ‘2) → 1 < 𝑋)
812, 80syl 14 . . . . . 6 (𝜑 → 1 < 𝑋)
82 expgt1 10648 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝑋) → 1 < (𝑋𝑁))
8361, 8, 81, 82syl3anc 1249 . . . . 5 (𝜑 → 1 < (𝑋𝑁))
8483adantr 276 . . . 4 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 < (𝑋𝑁))
8560, 64, 63, 79, 84lelttrd 8144 . . 3 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) < (𝑋𝑁))
8660, 63, 85gtapd 8656 . 2 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝑋𝑁) # (𝐵𝑀))
87 elznn 9333 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ0)))
8857, 87sylib 122 . . 3 (𝜑 → (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ0)))
8988simprd 114 . 2 (𝜑 → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ0))
9054, 86, 89mpjaodan 799 1 (𝜑 → (𝑋𝑁) # (𝐵𝑀))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164  wne 2364   class class class wbr 4029  cfv 5254  (class class class)co 5918  cr 7871  0cc0 7872  1c1 7873   < clt 8054  cle 8055  -cneg 8191   # cap 8600   / cdiv 8691  cn 8982  2c2 9033  0cn0 9240  cz 9317  cuz 9592  +crp 9719  cexp 10609  abscabs 11141   gcd cgcd 12079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-prm 12246
This theorem is referenced by:  logbgcd1irraplemap  15101
  Copyright terms: Public domain W3C validator