ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irraplemexp GIF version

Theorem logbgcd1irraplemexp 13680
Description: Lemma for logbgcd1irrap 13682. Apartness of 𝑋𝑁 and 𝐵𝑀. (Contributed by Jim Kingdon, 11-Jul-2024.)
Hypotheses
Ref Expression
logbgcd1irraplem.x (𝜑𝑋 ∈ (ℤ‘2))
logbgcd1irraplem.b (𝜑𝐵 ∈ (ℤ‘2))
logbgcd1irraplem.rp (𝜑 → (𝑋 gcd 𝐵) = 1)
logbgcd1irraplem.m (𝜑𝑀 ∈ ℤ)
logbgcd1irraplem.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
logbgcd1irraplemexp (𝜑 → (𝑋𝑁) # (𝐵𝑀))

Proof of Theorem logbgcd1irraplemexp
StepHypRef Expression
1 logbgcd1irraplem.rp . . . . . . . 8 (𝜑 → (𝑋 gcd 𝐵) = 1)
2 logbgcd1irraplem.x . . . . . . . . . 10 (𝜑𝑋 ∈ (ℤ‘2))
3 eluz2nn 9525 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
42, 3syl 14 . . . . . . . . 9 (𝜑𝑋 ∈ ℕ)
5 logbgcd1irraplem.b . . . . . . . . . 10 (𝜑𝐵 ∈ (ℤ‘2))
6 eluz2nn 9525 . . . . . . . . . 10 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
75, 6syl 14 . . . . . . . . 9 (𝜑𝐵 ∈ ℕ)
8 logbgcd1irraplem.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
9 rplpwr 11982 . . . . . . . . 9 ((𝑋 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑁) gcd 𝐵) = 1))
104, 7, 8, 9syl3anc 1233 . . . . . . . 8 (𝜑 → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑁) gcd 𝐵) = 1))
111, 10mpd 13 . . . . . . 7 (𝜑 → ((𝑋𝑁) gcd 𝐵) = 1)
1211ad2antrr 485 . . . . . 6 (((𝜑𝑀 ∈ ℕ) ∧ (𝐵𝑀) = (𝑋𝑁)) → ((𝑋𝑁) gcd 𝐵) = 1)
13 1red 7935 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
14 eluz2gt1 9561 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
155, 14syl 14 . . . . . . . . . . . . 13 (𝜑 → 1 < 𝐵)
1613, 15gtned 8032 . . . . . . . . . . . 12 (𝜑𝐵 ≠ 1)
1716neneqd 2361 . . . . . . . . . . 11 (𝜑 → ¬ 𝐵 = 1)
187nnzd 9333 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℤ)
19 gcdid 11941 . . . . . . . . . . . . . 14 (𝐵 ∈ ℤ → (𝐵 gcd 𝐵) = (abs‘𝐵))
2018, 19syl 14 . . . . . . . . . . . . 13 (𝜑 → (𝐵 gcd 𝐵) = (abs‘𝐵))
217nnred 8891 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ)
227nnnn0d 9188 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℕ0)
2322nn0ge0d 9191 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 𝐵)
2421, 23absidd 11131 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝐵) = 𝐵)
2520, 24eqtrd 2203 . . . . . . . . . . . 12 (𝜑 → (𝐵 gcd 𝐵) = 𝐵)
2625eqeq1d 2179 . . . . . . . . . . 11 (𝜑 → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
2717, 26mtbird 668 . . . . . . . . . 10 (𝜑 → ¬ (𝐵 gcd 𝐵) = 1)
2827adantr 274 . . . . . . . . 9 ((𝜑𝑀 ∈ ℕ) → ¬ (𝐵 gcd 𝐵) = 1)
2918adantr 274 . . . . . . . . . 10 ((𝜑𝑀 ∈ ℕ) → 𝐵 ∈ ℤ)
30 simpr 109 . . . . . . . . . 10 ((𝜑𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
31 rpexp 12107 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (((𝐵𝑀) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
3229, 29, 30, 31syl3anc 1233 . . . . . . . . 9 ((𝜑𝑀 ∈ ℕ) → (((𝐵𝑀) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
3328, 32mtbird 668 . . . . . . . 8 ((𝜑𝑀 ∈ ℕ) → ¬ ((𝐵𝑀) gcd 𝐵) = 1)
3433adantr 274 . . . . . . 7 (((𝜑𝑀 ∈ ℕ) ∧ (𝐵𝑀) = (𝑋𝑁)) → ¬ ((𝐵𝑀) gcd 𝐵) = 1)
35 oveq1 5860 . . . . . . . . . 10 ((𝑋𝑁) = (𝐵𝑀) → ((𝑋𝑁) gcd 𝐵) = ((𝐵𝑀) gcd 𝐵))
3635eqeq1d 2179 . . . . . . . . 9 ((𝑋𝑁) = (𝐵𝑀) → (((𝑋𝑁) gcd 𝐵) = 1 ↔ ((𝐵𝑀) gcd 𝐵) = 1))
3736eqcoms 2173 . . . . . . . 8 ((𝐵𝑀) = (𝑋𝑁) → (((𝑋𝑁) gcd 𝐵) = 1 ↔ ((𝐵𝑀) gcd 𝐵) = 1))
3837adantl 275 . . . . . . 7 (((𝜑𝑀 ∈ ℕ) ∧ (𝐵𝑀) = (𝑋𝑁)) → (((𝑋𝑁) gcd 𝐵) = 1 ↔ ((𝐵𝑀) gcd 𝐵) = 1))
3934, 38mtbird 668 . . . . . 6 (((𝜑𝑀 ∈ ℕ) ∧ (𝐵𝑀) = (𝑋𝑁)) → ¬ ((𝑋𝑁) gcd 𝐵) = 1)
4012, 39pm2.65da 656 . . . . 5 ((𝜑𝑀 ∈ ℕ) → ¬ (𝐵𝑀) = (𝑋𝑁))
4140neqcomd 2175 . . . 4 ((𝜑𝑀 ∈ ℕ) → ¬ (𝑋𝑁) = (𝐵𝑀))
4241neqned 2347 . . 3 ((𝜑𝑀 ∈ ℕ) → (𝑋𝑁) ≠ (𝐵𝑀))
434nnzd 9333 . . . . . 6 (𝜑𝑋 ∈ ℤ)
4443adantr 274 . . . . 5 ((𝜑𝑀 ∈ ℕ) → 𝑋 ∈ ℤ)
458nnnn0d 9188 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
4645adantr 274 . . . . 5 ((𝜑𝑀 ∈ ℕ) → 𝑁 ∈ ℕ0)
47 zexpcl 10491 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑋𝑁) ∈ ℤ)
4844, 46, 47syl2anc 409 . . . 4 ((𝜑𝑀 ∈ ℕ) → (𝑋𝑁) ∈ ℤ)
4930nnnn0d 9188 . . . . 5 ((𝜑𝑀 ∈ ℕ) → 𝑀 ∈ ℕ0)
50 zexpcl 10491 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝐵𝑀) ∈ ℤ)
5129, 49, 50syl2anc 409 . . . 4 ((𝜑𝑀 ∈ ℕ) → (𝐵𝑀) ∈ ℤ)
52 zapne 9286 . . . 4 (((𝑋𝑁) ∈ ℤ ∧ (𝐵𝑀) ∈ ℤ) → ((𝑋𝑁) # (𝐵𝑀) ↔ (𝑋𝑁) ≠ (𝐵𝑀)))
5348, 51, 52syl2anc 409 . . 3 ((𝜑𝑀 ∈ ℕ) → ((𝑋𝑁) # (𝐵𝑀) ↔ (𝑋𝑁) ≠ (𝐵𝑀)))
5442, 53mpbird 166 . 2 ((𝜑𝑀 ∈ ℕ) → (𝑋𝑁) # (𝐵𝑀))
557nnrpd 9651 . . . . . 6 (𝜑𝐵 ∈ ℝ+)
5655adantr 274 . . . . 5 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 ∈ ℝ+)
57 logbgcd1irraplem.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
5857adantr 274 . . . . 5 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ)
5956, 58rpexpcld 10633 . . . 4 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) ∈ ℝ+)
6059rpred 9653 . . 3 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) ∈ ℝ)
614nnred 8891 . . . . 5 (𝜑𝑋 ∈ ℝ)
6261, 45reexpcld 10626 . . . 4 (𝜑 → (𝑋𝑁) ∈ ℝ)
6362adantr 274 . . 3 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝑋𝑁) ∈ ℝ)
64 1red 7935 . . . 4 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ∈ ℝ)
65 1rp 9614 . . . . . . 7 1 ∈ ℝ+
6665a1i 9 . . . . . 6 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ∈ ℝ+)
6721adantr 274 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 ∈ ℝ)
68 simpr 109 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℕ0)
697nnge1d 8921 . . . . . . . . 9 (𝜑 → 1 ≤ 𝐵)
7069adantr 274 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ≤ 𝐵)
7167, 68, 70expge1d 10628 . . . . . . 7 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ≤ (𝐵↑-𝑀))
7267recnd 7948 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 ∈ ℂ)
737nnap0d 8924 . . . . . . . . 9 (𝜑𝐵 # 0)
7473adantr 274 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 # 0)
7572, 74, 58expnegapd 10616 . . . . . . 7 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵↑-𝑀) = (1 / (𝐵𝑀)))
7671, 75breqtrd 4015 . . . . . 6 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ≤ (1 / (𝐵𝑀)))
7766, 59, 76lerec2d 9675 . . . . 5 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) ≤ (1 / 1))
78 1div1e1 8621 . . . . 5 (1 / 1) = 1
7977, 78breqtrdi 4030 . . . 4 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) ≤ 1)
80 eluz2gt1 9561 . . . . . . 7 (𝑋 ∈ (ℤ‘2) → 1 < 𝑋)
812, 80syl 14 . . . . . 6 (𝜑 → 1 < 𝑋)
82 expgt1 10514 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝑋) → 1 < (𝑋𝑁))
8361, 8, 81, 82syl3anc 1233 . . . . 5 (𝜑 → 1 < (𝑋𝑁))
8483adantr 274 . . . 4 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 < (𝑋𝑁))
8560, 64, 63, 79, 84lelttrd 8044 . . 3 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) < (𝑋𝑁))
8660, 63, 85gtapd 8556 . 2 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝑋𝑁) # (𝐵𝑀))
87 elznn 9228 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ0)))
8857, 87sylib 121 . . 3 (𝜑 → (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ0)))
8988simprd 113 . 2 (𝜑 → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ0))
9054, 86, 89mpjaodan 793 1 (𝜑 → (𝑋𝑁) # (𝐵𝑀))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  wne 2340   class class class wbr 3989  cfv 5198  (class class class)co 5853  cr 7773  0cc0 7774  1c1 7775   < clt 7954  cle 7955  -cneg 8091   # cap 8500   / cdiv 8589  cn 8878  2c2 8929  0cn0 9135  cz 9212  cuz 9487  +crp 9610  cexp 10475  abscabs 10961   gcd cgcd 11897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062
This theorem is referenced by:  logbgcd1irraplemap  13681
  Copyright terms: Public domain W3C validator