ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irraplemexp GIF version

Theorem logbgcd1irraplemexp 15490
Description: Lemma for logbgcd1irrap 15492. Apartness of 𝑋𝑁 and 𝐵𝑀. (Contributed by Jim Kingdon, 11-Jul-2024.)
Hypotheses
Ref Expression
logbgcd1irraplem.x (𝜑𝑋 ∈ (ℤ‘2))
logbgcd1irraplem.b (𝜑𝐵 ∈ (ℤ‘2))
logbgcd1irraplem.rp (𝜑 → (𝑋 gcd 𝐵) = 1)
logbgcd1irraplem.m (𝜑𝑀 ∈ ℤ)
logbgcd1irraplem.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
logbgcd1irraplemexp (𝜑 → (𝑋𝑁) # (𝐵𝑀))

Proof of Theorem logbgcd1irraplemexp
StepHypRef Expression
1 logbgcd1irraplem.rp . . . . . . . 8 (𝜑 → (𝑋 gcd 𝐵) = 1)
2 logbgcd1irraplem.x . . . . . . . . . 10 (𝜑𝑋 ∈ (ℤ‘2))
3 eluz2nn 9700 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
42, 3syl 14 . . . . . . . . 9 (𝜑𝑋 ∈ ℕ)
5 logbgcd1irraplem.b . . . . . . . . . 10 (𝜑𝐵 ∈ (ℤ‘2))
6 eluz2nn 9700 . . . . . . . . . 10 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
75, 6syl 14 . . . . . . . . 9 (𝜑𝐵 ∈ ℕ)
8 logbgcd1irraplem.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
9 rplpwr 12398 . . . . . . . . 9 ((𝑋 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑁) gcd 𝐵) = 1))
104, 7, 8, 9syl3anc 1250 . . . . . . . 8 (𝜑 → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑁) gcd 𝐵) = 1))
111, 10mpd 13 . . . . . . 7 (𝜑 → ((𝑋𝑁) gcd 𝐵) = 1)
1211ad2antrr 488 . . . . . 6 (((𝜑𝑀 ∈ ℕ) ∧ (𝐵𝑀) = (𝑋𝑁)) → ((𝑋𝑁) gcd 𝐵) = 1)
13 1red 8100 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
14 eluz2gt1 9736 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
155, 14syl 14 . . . . . . . . . . . . 13 (𝜑 → 1 < 𝐵)
1613, 15gtned 8198 . . . . . . . . . . . 12 (𝜑𝐵 ≠ 1)
1716neneqd 2398 . . . . . . . . . . 11 (𝜑 → ¬ 𝐵 = 1)
187nnzd 9507 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℤ)
19 gcdid 12357 . . . . . . . . . . . . . 14 (𝐵 ∈ ℤ → (𝐵 gcd 𝐵) = (abs‘𝐵))
2018, 19syl 14 . . . . . . . . . . . . 13 (𝜑 → (𝐵 gcd 𝐵) = (abs‘𝐵))
217nnred 9062 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ)
227nnnn0d 9361 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℕ0)
2322nn0ge0d 9364 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 𝐵)
2421, 23absidd 11528 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝐵) = 𝐵)
2520, 24eqtrd 2239 . . . . . . . . . . . 12 (𝜑 → (𝐵 gcd 𝐵) = 𝐵)
2625eqeq1d 2215 . . . . . . . . . . 11 (𝜑 → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
2717, 26mtbird 675 . . . . . . . . . 10 (𝜑 → ¬ (𝐵 gcd 𝐵) = 1)
2827adantr 276 . . . . . . . . 9 ((𝜑𝑀 ∈ ℕ) → ¬ (𝐵 gcd 𝐵) = 1)
2918adantr 276 . . . . . . . . . 10 ((𝜑𝑀 ∈ ℕ) → 𝐵 ∈ ℤ)
30 simpr 110 . . . . . . . . . 10 ((𝜑𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
31 rpexp 12525 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (((𝐵𝑀) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
3229, 29, 30, 31syl3anc 1250 . . . . . . . . 9 ((𝜑𝑀 ∈ ℕ) → (((𝐵𝑀) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
3328, 32mtbird 675 . . . . . . . 8 ((𝜑𝑀 ∈ ℕ) → ¬ ((𝐵𝑀) gcd 𝐵) = 1)
3433adantr 276 . . . . . . 7 (((𝜑𝑀 ∈ ℕ) ∧ (𝐵𝑀) = (𝑋𝑁)) → ¬ ((𝐵𝑀) gcd 𝐵) = 1)
35 oveq1 5961 . . . . . . . . . 10 ((𝑋𝑁) = (𝐵𝑀) → ((𝑋𝑁) gcd 𝐵) = ((𝐵𝑀) gcd 𝐵))
3635eqeq1d 2215 . . . . . . . . 9 ((𝑋𝑁) = (𝐵𝑀) → (((𝑋𝑁) gcd 𝐵) = 1 ↔ ((𝐵𝑀) gcd 𝐵) = 1))
3736eqcoms 2209 . . . . . . . 8 ((𝐵𝑀) = (𝑋𝑁) → (((𝑋𝑁) gcd 𝐵) = 1 ↔ ((𝐵𝑀) gcd 𝐵) = 1))
3837adantl 277 . . . . . . 7 (((𝜑𝑀 ∈ ℕ) ∧ (𝐵𝑀) = (𝑋𝑁)) → (((𝑋𝑁) gcd 𝐵) = 1 ↔ ((𝐵𝑀) gcd 𝐵) = 1))
3934, 38mtbird 675 . . . . . 6 (((𝜑𝑀 ∈ ℕ) ∧ (𝐵𝑀) = (𝑋𝑁)) → ¬ ((𝑋𝑁) gcd 𝐵) = 1)
4012, 39pm2.65da 663 . . . . 5 ((𝜑𝑀 ∈ ℕ) → ¬ (𝐵𝑀) = (𝑋𝑁))
4140neqcomd 2211 . . . 4 ((𝜑𝑀 ∈ ℕ) → ¬ (𝑋𝑁) = (𝐵𝑀))
4241neqned 2384 . . 3 ((𝜑𝑀 ∈ ℕ) → (𝑋𝑁) ≠ (𝐵𝑀))
434nnzd 9507 . . . . . 6 (𝜑𝑋 ∈ ℤ)
4443adantr 276 . . . . 5 ((𝜑𝑀 ∈ ℕ) → 𝑋 ∈ ℤ)
458nnnn0d 9361 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
4645adantr 276 . . . . 5 ((𝜑𝑀 ∈ ℕ) → 𝑁 ∈ ℕ0)
47 zexpcl 10712 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑋𝑁) ∈ ℤ)
4844, 46, 47syl2anc 411 . . . 4 ((𝜑𝑀 ∈ ℕ) → (𝑋𝑁) ∈ ℤ)
4930nnnn0d 9361 . . . . 5 ((𝜑𝑀 ∈ ℕ) → 𝑀 ∈ ℕ0)
50 zexpcl 10712 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝐵𝑀) ∈ ℤ)
5129, 49, 50syl2anc 411 . . . 4 ((𝜑𝑀 ∈ ℕ) → (𝐵𝑀) ∈ ℤ)
52 zapne 9460 . . . 4 (((𝑋𝑁) ∈ ℤ ∧ (𝐵𝑀) ∈ ℤ) → ((𝑋𝑁) # (𝐵𝑀) ↔ (𝑋𝑁) ≠ (𝐵𝑀)))
5348, 51, 52syl2anc 411 . . 3 ((𝜑𝑀 ∈ ℕ) → ((𝑋𝑁) # (𝐵𝑀) ↔ (𝑋𝑁) ≠ (𝐵𝑀)))
5442, 53mpbird 167 . 2 ((𝜑𝑀 ∈ ℕ) → (𝑋𝑁) # (𝐵𝑀))
557nnrpd 9829 . . . . . 6 (𝜑𝐵 ∈ ℝ+)
5655adantr 276 . . . . 5 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 ∈ ℝ+)
57 logbgcd1irraplem.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
5857adantr 276 . . . . 5 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ)
5956, 58rpexpcld 10855 . . . 4 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) ∈ ℝ+)
6059rpred 9831 . . 3 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) ∈ ℝ)
614nnred 9062 . . . . 5 (𝜑𝑋 ∈ ℝ)
6261, 45reexpcld 10848 . . . 4 (𝜑 → (𝑋𝑁) ∈ ℝ)
6362adantr 276 . . 3 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝑋𝑁) ∈ ℝ)
64 1red 8100 . . . 4 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ∈ ℝ)
65 1rp 9792 . . . . . . 7 1 ∈ ℝ+
6665a1i 9 . . . . . 6 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ∈ ℝ+)
6721adantr 276 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 ∈ ℝ)
68 simpr 110 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℕ0)
697nnge1d 9092 . . . . . . . . 9 (𝜑 → 1 ≤ 𝐵)
7069adantr 276 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ≤ 𝐵)
7167, 68, 70expge1d 10850 . . . . . . 7 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ≤ (𝐵↑-𝑀))
7267recnd 8114 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 ∈ ℂ)
737nnap0d 9095 . . . . . . . . 9 (𝜑𝐵 # 0)
7473adantr 276 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 # 0)
7572, 74, 58expnegapd 10838 . . . . . . 7 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵↑-𝑀) = (1 / (𝐵𝑀)))
7671, 75breqtrd 4074 . . . . . 6 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ≤ (1 / (𝐵𝑀)))
7766, 59, 76lerec2d 9853 . . . . 5 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) ≤ (1 / 1))
78 1div1e1 8790 . . . . 5 (1 / 1) = 1
7977, 78breqtrdi 4089 . . . 4 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) ≤ 1)
80 eluz2gt1 9736 . . . . . . 7 (𝑋 ∈ (ℤ‘2) → 1 < 𝑋)
812, 80syl 14 . . . . . 6 (𝜑 → 1 < 𝑋)
82 expgt1 10735 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝑋) → 1 < (𝑋𝑁))
8361, 8, 81, 82syl3anc 1250 . . . . 5 (𝜑 → 1 < (𝑋𝑁))
8483adantr 276 . . . 4 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 < (𝑋𝑁))
8560, 64, 63, 79, 84lelttrd 8210 . . 3 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) < (𝑋𝑁))
8660, 63, 85gtapd 8723 . 2 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝑋𝑁) # (𝐵𝑀))
87 elznn 9401 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ0)))
8857, 87sylib 122 . . 3 (𝜑 → (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ0)))
8988simprd 114 . 2 (𝜑 → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ0))
9054, 86, 89mpjaodan 800 1 (𝜑 → (𝑋𝑁) # (𝐵𝑀))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  wne 2377   class class class wbr 4048  cfv 5277  (class class class)co 5954  cr 7937  0cc0 7938  1c1 7939   < clt 8120  cle 8121  -cneg 8257   # cap 8667   / cdiv 8758  cn 9049  2c2 9100  0cn0 9308  cz 9385  cuz 9661  +crp 9788  cexp 10696  abscabs 11358   gcd cgcd 12324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-frec 6487  df-1o 6512  df-2o 6513  df-er 6630  df-en 6838  df-sup 7098  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-fz 10144  df-fzo 10278  df-fl 10426  df-mod 10481  df-seqfrec 10606  df-exp 10697  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-dvds 12149  df-gcd 12325  df-prm 12480
This theorem is referenced by:  logbgcd1irraplemap  15491
  Copyright terms: Public domain W3C validator