ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irraplemexp GIF version

Theorem logbgcd1irraplemexp 13232
Description: Lemma for logbgcd1irrap 13234. Apartness of 𝑋𝑁 and 𝐵𝑀. (Contributed by Jim Kingdon, 11-Jul-2024.)
Hypotheses
Ref Expression
logbgcd1irraplem.x (𝜑𝑋 ∈ (ℤ‘2))
logbgcd1irraplem.b (𝜑𝐵 ∈ (ℤ‘2))
logbgcd1irraplem.rp (𝜑 → (𝑋 gcd 𝐵) = 1)
logbgcd1irraplem.m (𝜑𝑀 ∈ ℤ)
logbgcd1irraplem.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
logbgcd1irraplemexp (𝜑 → (𝑋𝑁) # (𝐵𝑀))

Proof of Theorem logbgcd1irraplemexp
StepHypRef Expression
1 logbgcd1irraplem.rp . . . . . . . 8 (𝜑 → (𝑋 gcd 𝐵) = 1)
2 logbgcd1irraplem.x . . . . . . . . . 10 (𝜑𝑋 ∈ (ℤ‘2))
3 eluz2nn 9456 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
42, 3syl 14 . . . . . . . . 9 (𝜑𝑋 ∈ ℕ)
5 logbgcd1irraplem.b . . . . . . . . . 10 (𝜑𝐵 ∈ (ℤ‘2))
6 eluz2nn 9456 . . . . . . . . . 10 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
75, 6syl 14 . . . . . . . . 9 (𝜑𝐵 ∈ ℕ)
8 logbgcd1irraplem.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
9 rplpwr 11883 . . . . . . . . 9 ((𝑋 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑁) gcd 𝐵) = 1))
104, 7, 8, 9syl3anc 1217 . . . . . . . 8 (𝜑 → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑁) gcd 𝐵) = 1))
111, 10mpd 13 . . . . . . 7 (𝜑 → ((𝑋𝑁) gcd 𝐵) = 1)
1211ad2antrr 480 . . . . . 6 (((𝜑𝑀 ∈ ℕ) ∧ (𝐵𝑀) = (𝑋𝑁)) → ((𝑋𝑁) gcd 𝐵) = 1)
13 1red 7872 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
14 eluz2gt1 9491 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
155, 14syl 14 . . . . . . . . . . . . 13 (𝜑 → 1 < 𝐵)
1613, 15gtned 7968 . . . . . . . . . . . 12 (𝜑𝐵 ≠ 1)
1716neneqd 2345 . . . . . . . . . . 11 (𝜑 → ¬ 𝐵 = 1)
187nnzd 9264 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℤ)
19 gcdid 11842 . . . . . . . . . . . . . 14 (𝐵 ∈ ℤ → (𝐵 gcd 𝐵) = (abs‘𝐵))
2018, 19syl 14 . . . . . . . . . . . . 13 (𝜑 → (𝐵 gcd 𝐵) = (abs‘𝐵))
217nnred 8825 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ)
227nnnn0d 9122 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℕ0)
2322nn0ge0d 9125 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 𝐵)
2421, 23absidd 11044 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝐵) = 𝐵)
2520, 24eqtrd 2187 . . . . . . . . . . . 12 (𝜑 → (𝐵 gcd 𝐵) = 𝐵)
2625eqeq1d 2163 . . . . . . . . . . 11 (𝜑 → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
2717, 26mtbird 663 . . . . . . . . . 10 (𝜑 → ¬ (𝐵 gcd 𝐵) = 1)
2827adantr 274 . . . . . . . . 9 ((𝜑𝑀 ∈ ℕ) → ¬ (𝐵 gcd 𝐵) = 1)
2918adantr 274 . . . . . . . . . 10 ((𝜑𝑀 ∈ ℕ) → 𝐵 ∈ ℤ)
30 simpr 109 . . . . . . . . . 10 ((𝜑𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
31 rpexp 11999 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (((𝐵𝑀) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
3229, 29, 30, 31syl3anc 1217 . . . . . . . . 9 ((𝜑𝑀 ∈ ℕ) → (((𝐵𝑀) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
3328, 32mtbird 663 . . . . . . . 8 ((𝜑𝑀 ∈ ℕ) → ¬ ((𝐵𝑀) gcd 𝐵) = 1)
3433adantr 274 . . . . . . 7 (((𝜑𝑀 ∈ ℕ) ∧ (𝐵𝑀) = (𝑋𝑁)) → ¬ ((𝐵𝑀) gcd 𝐵) = 1)
35 oveq1 5821 . . . . . . . . . 10 ((𝑋𝑁) = (𝐵𝑀) → ((𝑋𝑁) gcd 𝐵) = ((𝐵𝑀) gcd 𝐵))
3635eqeq1d 2163 . . . . . . . . 9 ((𝑋𝑁) = (𝐵𝑀) → (((𝑋𝑁) gcd 𝐵) = 1 ↔ ((𝐵𝑀) gcd 𝐵) = 1))
3736eqcoms 2157 . . . . . . . 8 ((𝐵𝑀) = (𝑋𝑁) → (((𝑋𝑁) gcd 𝐵) = 1 ↔ ((𝐵𝑀) gcd 𝐵) = 1))
3837adantl 275 . . . . . . 7 (((𝜑𝑀 ∈ ℕ) ∧ (𝐵𝑀) = (𝑋𝑁)) → (((𝑋𝑁) gcd 𝐵) = 1 ↔ ((𝐵𝑀) gcd 𝐵) = 1))
3934, 38mtbird 663 . . . . . 6 (((𝜑𝑀 ∈ ℕ) ∧ (𝐵𝑀) = (𝑋𝑁)) → ¬ ((𝑋𝑁) gcd 𝐵) = 1)
4012, 39pm2.65da 651 . . . . 5 ((𝜑𝑀 ∈ ℕ) → ¬ (𝐵𝑀) = (𝑋𝑁))
4140neqcomd 2159 . . . 4 ((𝜑𝑀 ∈ ℕ) → ¬ (𝑋𝑁) = (𝐵𝑀))
4241neqned 2331 . . 3 ((𝜑𝑀 ∈ ℕ) → (𝑋𝑁) ≠ (𝐵𝑀))
434nnzd 9264 . . . . . 6 (𝜑𝑋 ∈ ℤ)
4443adantr 274 . . . . 5 ((𝜑𝑀 ∈ ℕ) → 𝑋 ∈ ℤ)
458nnnn0d 9122 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
4645adantr 274 . . . . 5 ((𝜑𝑀 ∈ ℕ) → 𝑁 ∈ ℕ0)
47 zexpcl 10412 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑋𝑁) ∈ ℤ)
4844, 46, 47syl2anc 409 . . . 4 ((𝜑𝑀 ∈ ℕ) → (𝑋𝑁) ∈ ℤ)
4930nnnn0d 9122 . . . . 5 ((𝜑𝑀 ∈ ℕ) → 𝑀 ∈ ℕ0)
50 zexpcl 10412 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝐵𝑀) ∈ ℤ)
5129, 49, 50syl2anc 409 . . . 4 ((𝜑𝑀 ∈ ℕ) → (𝐵𝑀) ∈ ℤ)
52 zapne 9217 . . . 4 (((𝑋𝑁) ∈ ℤ ∧ (𝐵𝑀) ∈ ℤ) → ((𝑋𝑁) # (𝐵𝑀) ↔ (𝑋𝑁) ≠ (𝐵𝑀)))
5348, 51, 52syl2anc 409 . . 3 ((𝜑𝑀 ∈ ℕ) → ((𝑋𝑁) # (𝐵𝑀) ↔ (𝑋𝑁) ≠ (𝐵𝑀)))
5442, 53mpbird 166 . 2 ((𝜑𝑀 ∈ ℕ) → (𝑋𝑁) # (𝐵𝑀))
557nnrpd 9579 . . . . . 6 (𝜑𝐵 ∈ ℝ+)
5655adantr 274 . . . . 5 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 ∈ ℝ+)
57 logbgcd1irraplem.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
5857adantr 274 . . . . 5 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ)
5956, 58rpexpcld 10552 . . . 4 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) ∈ ℝ+)
6059rpred 9581 . . 3 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) ∈ ℝ)
614nnred 8825 . . . . 5 (𝜑𝑋 ∈ ℝ)
6261, 45reexpcld 10545 . . . 4 (𝜑 → (𝑋𝑁) ∈ ℝ)
6362adantr 274 . . 3 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝑋𝑁) ∈ ℝ)
64 1red 7872 . . . 4 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ∈ ℝ)
65 1rp 9542 . . . . . . 7 1 ∈ ℝ+
6665a1i 9 . . . . . 6 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ∈ ℝ+)
6721adantr 274 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 ∈ ℝ)
68 simpr 109 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℕ0)
697nnge1d 8855 . . . . . . . . 9 (𝜑 → 1 ≤ 𝐵)
7069adantr 274 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ≤ 𝐵)
7167, 68, 70expge1d 10547 . . . . . . 7 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ≤ (𝐵↑-𝑀))
7267recnd 7885 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 ∈ ℂ)
737nnap0d 8858 . . . . . . . . 9 (𝜑𝐵 # 0)
7473adantr 274 . . . . . . . 8 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 𝐵 # 0)
7572, 74, 58expnegapd 10535 . . . . . . 7 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵↑-𝑀) = (1 / (𝐵𝑀)))
7671, 75breqtrd 3986 . . . . . 6 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 ≤ (1 / (𝐵𝑀)))
7766, 59, 76lerec2d 9603 . . . . 5 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) ≤ (1 / 1))
78 1div1e1 8556 . . . . 5 (1 / 1) = 1
7977, 78breqtrdi 4001 . . . 4 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) ≤ 1)
80 eluz2gt1 9491 . . . . . . 7 (𝑋 ∈ (ℤ‘2) → 1 < 𝑋)
812, 80syl 14 . . . . . 6 (𝜑 → 1 < 𝑋)
82 expgt1 10435 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝑋) → 1 < (𝑋𝑁))
8361, 8, 81, 82syl3anc 1217 . . . . 5 (𝜑 → 1 < (𝑋𝑁))
8483adantr 274 . . . 4 ((𝜑 ∧ -𝑀 ∈ ℕ0) → 1 < (𝑋𝑁))
8560, 64, 63, 79, 84lelttrd 7979 . . 3 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝐵𝑀) < (𝑋𝑁))
8660, 63, 85gtapd 8491 . 2 ((𝜑 ∧ -𝑀 ∈ ℕ0) → (𝑋𝑁) # (𝐵𝑀))
87 elznn 9162 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ0)))
8857, 87sylib 121 . . 3 (𝜑 → (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ0)))
8988simprd 113 . 2 (𝜑 → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ0))
9054, 86, 89mpjaodan 788 1 (𝜑 → (𝑋𝑁) # (𝐵𝑀))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698   = wceq 1332  wcel 2125  wne 2324   class class class wbr 3961  cfv 5163  (class class class)co 5814  cr 7710  0cc0 7711  1c1 7712   < clt 7891  cle 7892  -cneg 8026   # cap 8435   / cdiv 8524  cn 8812  2c2 8863  0cn0 9069  cz 9146  cuz 9418  +crp 9538  cexp 10396  abscabs 10874   gcd cgcd 11802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-1o 6353  df-2o 6354  df-er 6469  df-en 6675  df-sup 6916  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-fz 9891  df-fzo 10020  df-fl 10147  df-mod 10200  df-seqfrec 10323  df-exp 10397  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-dvds 11661  df-gcd 11803  df-prm 11957
This theorem is referenced by:  logbgcd1irraplemap  13233
  Copyright terms: Public domain W3C validator