ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos12dec GIF version

Theorem cos12dec 11759
Description: Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.)
Assertion
Ref Expression
cos12dec ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴))

Proof of Theorem cos12dec
StepHypRef Expression
1 1re 7947 . . . . . . . . . . 11 1 ∈ ℝ
2 2re 8978 . . . . . . . . . . 11 2 ∈ ℝ
3 iccssre 9942 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 2 ∈ ℝ) → (1[,]2) ⊆ ℝ)
41, 2, 3mp2an 426 . . . . . . . . . 10 (1[,]2) ⊆ ℝ
54sseli 3151 . . . . . . . . 9 (𝐵 ∈ (1[,]2) → 𝐵 ∈ ℝ)
653ad2ant2 1019 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
76recnd 7976 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
84sseli 3151 . . . . . . . . . . 11 (𝐴 ∈ (1[,]2) → 𝐴 ∈ ℝ)
983ad2ant1 1018 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
106, 9resubcld 8328 . . . . . . . . 9 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ)
1110recnd 7976 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℂ)
1211halfcld 9152 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ∈ ℂ)
137, 12subcld 8258 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ∈ ℂ)
1413coscld 11703 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘(𝐵 − ((𝐵𝐴) / 2))) ∈ ℂ)
1512coscld 11703 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵𝐴) / 2)) ∈ ℂ)
1614, 15mulcld 7968 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) ∈ ℂ)
1713sincld 11702 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (sin‘(𝐵 − ((𝐵𝐴) / 2))) ∈ ℂ)
1812sincld 11702 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (sin‘((𝐵𝐴) / 2)) ∈ ℂ)
1917, 18mulcld 7968 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) ∈ ℂ)
2016, 19negsubd 8264 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
2110rehalfcld 9154 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ∈ ℝ)
226, 21resubcld 8328 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ∈ ℝ)
2322resincld 11715 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (sin‘(𝐵 − ((𝐵𝐴) / 2))) ∈ ℝ)
2421resincld 11715 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (sin‘((𝐵𝐴) / 2)) ∈ ℝ)
2523, 24remulcld 7978 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) ∈ ℝ)
2625renegcld 8327 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) ∈ ℝ)
2722recoscld 11716 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘(𝐵 − ((𝐵𝐴) / 2))) ∈ ℝ)
2821recoscld 11716 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵𝐴) / 2)) ∈ ℝ)
2927, 28remulcld 7978 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) ∈ ℝ)
30 0red 7949 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 ∈ ℝ)
311a1i 9 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 1 ∈ ℝ)
3231rehalfcld 9154 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (1 / 2) ∈ ℝ)
33 simp3 999 . . . . . . . . . . . . 13 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
349, 6posdifd 8479 . . . . . . . . . . . . 13 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
3533, 34mpbid 147 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (𝐵𝐴))
36 halfpos2 9138 . . . . . . . . . . . . 13 ((𝐵𝐴) ∈ ℝ → (0 < (𝐵𝐴) ↔ 0 < ((𝐵𝐴) / 2)))
3710, 36syl 14 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (0 < (𝐵𝐴) ↔ 0 < ((𝐵𝐴) / 2)))
3835, 37mpbid 147 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < ((𝐵𝐴) / 2))
39 2rp 9645 . . . . . . . . . . . . 13 2 ∈ ℝ+
4039a1i 9 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 2 ∈ ℝ+)
412a1i 9 . . . . . . . . . . . . . 14 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 2 ∈ ℝ)
421rexri 8005 . . . . . . . . . . . . . . . 16 1 ∈ ℝ*
432rexri 8005 . . . . . . . . . . . . . . . 16 2 ∈ ℝ*
44 iccleub 9918 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ* ∧ 2 ∈ ℝ*𝐵 ∈ (1[,]2)) → 𝐵 ≤ 2)
4542, 43, 44mp3an12 1327 . . . . . . . . . . . . . . 15 (𝐵 ∈ (1[,]2) → 𝐵 ≤ 2)
46453ad2ant2 1019 . . . . . . . . . . . . . 14 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐵 ≤ 2)
47 iccgelb 9919 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ* ∧ 2 ∈ ℝ*𝐴 ∈ (1[,]2)) → 1 ≤ 𝐴)
4842, 43, 47mp3an12 1327 . . . . . . . . . . . . . . 15 (𝐴 ∈ (1[,]2) → 1 ≤ 𝐴)
49483ad2ant1 1018 . . . . . . . . . . . . . 14 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 1 ≤ 𝐴)
506, 31, 41, 9, 46, 49le2subd 8511 . . . . . . . . . . . . 13 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵𝐴) ≤ (2 − 1))
51 2m1e1 9026 . . . . . . . . . . . . 13 (2 − 1) = 1
5250, 51breqtrdi 4041 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵𝐴) ≤ 1)
5310, 31, 40, 52lediv1dd 9742 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ≤ (1 / 2))
5430, 21, 32, 38, 53ltletrd 8370 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (1 / 2))
55 1mhlfehlf 9126 . . . . . . . . . . 11 (1 − (1 / 2)) = (1 / 2)
56 iccgelb 9919 . . . . . . . . . . . . . 14 ((1 ∈ ℝ* ∧ 2 ∈ ℝ*𝐵 ∈ (1[,]2)) → 1 ≤ 𝐵)
5742, 43, 56mp3an12 1327 . . . . . . . . . . . . 13 (𝐵 ∈ (1[,]2) → 1 ≤ 𝐵)
58573ad2ant2 1019 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 1 ≤ 𝐵)
5931, 21, 6, 32, 58, 53le2subd 8511 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (1 − (1 / 2)) ≤ (𝐵 − ((𝐵𝐴) / 2)))
6055, 59eqbrtrrid 4036 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (1 / 2) ≤ (𝐵 − ((𝐵𝐴) / 2)))
6130, 32, 22, 54, 60ltletrd 8370 . . . . . . . . 9 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (𝐵 − ((𝐵𝐴) / 2)))
6230, 21, 38ltled 8066 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 ≤ ((𝐵𝐴) / 2))
636, 30, 41, 21, 46, 62le2subd 8511 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ≤ (2 − 0))
64 2cn 8979 . . . . . . . . . . 11 2 ∈ ℂ
6564subid1i 8219 . . . . . . . . . 10 (2 − 0) = 2
6663, 65breqtrdi 4041 . . . . . . . . 9 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ≤ 2)
67 0xr 7994 . . . . . . . . . 10 0 ∈ ℝ*
68 elioc2 9923 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → ((𝐵 − ((𝐵𝐴) / 2)) ∈ (0(,]2) ↔ ((𝐵 − ((𝐵𝐴) / 2)) ∈ ℝ ∧ 0 < (𝐵 − ((𝐵𝐴) / 2)) ∧ (𝐵 − ((𝐵𝐴) / 2)) ≤ 2)))
6967, 2, 68mp2an 426 . . . . . . . . 9 ((𝐵 − ((𝐵𝐴) / 2)) ∈ (0(,]2) ↔ ((𝐵 − ((𝐵𝐴) / 2)) ∈ ℝ ∧ 0 < (𝐵 − ((𝐵𝐴) / 2)) ∧ (𝐵 − ((𝐵𝐴) / 2)) ≤ 2))
7022, 61, 66, 69syl3anbrc 1181 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ∈ (0(,]2))
71 sin02gt0 11755 . . . . . . . 8 ((𝐵 − ((𝐵𝐴) / 2)) ∈ (0(,]2) → 0 < (sin‘(𝐵 − ((𝐵𝐴) / 2))))
7270, 71syl 14 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (sin‘(𝐵 − ((𝐵𝐴) / 2))))
73 halfre 9121 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
74 halflt1 9125 . . . . . . . . . . . . 13 (1 / 2) < 1
75 1lt2 9077 . . . . . . . . . . . . 13 1 < 2
7673, 1, 2lttri 8052 . . . . . . . . . . . . 13 (((1 / 2) < 1 ∧ 1 < 2) → (1 / 2) < 2)
7774, 75, 76mp2an 426 . . . . . . . . . . . 12 (1 / 2) < 2
7873, 2, 77ltleii 8050 . . . . . . . . . . 11 (1 / 2) ≤ 2
7978a1i 9 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (1 / 2) ≤ 2)
8021, 32, 41, 53, 79letrd 8071 . . . . . . . . 9 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ≤ 2)
81 elioc2 9923 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (((𝐵𝐴) / 2) ∈ (0(,]2) ↔ (((𝐵𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵𝐴) / 2) ∧ ((𝐵𝐴) / 2) ≤ 2)))
8267, 2, 81mp2an 426 . . . . . . . . 9 (((𝐵𝐴) / 2) ∈ (0(,]2) ↔ (((𝐵𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵𝐴) / 2) ∧ ((𝐵𝐴) / 2) ≤ 2))
8321, 38, 80, 82syl3anbrc 1181 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ∈ (0(,]2))
84 sin02gt0 11755 . . . . . . . 8 (((𝐵𝐴) / 2) ∈ (0(,]2) → 0 < (sin‘((𝐵𝐴) / 2)))
8583, 84syl 14 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (sin‘((𝐵𝐴) / 2)))
8623, 24, 72, 85mulgt0d 8070 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))))
8725lt0neg2d 8463 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (0 < ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) ↔ -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) < 0))
8886, 87mpbid 147 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) < 0)
8926, 30, 25, 88, 86lttrd 8073 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) < ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))))
9026, 25, 29, 89ltadd2dd 8369 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))) < (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
9120, 90eqbrtrrd 4024 . 2 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))) < (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
927, 12npcand 8262 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵 − ((𝐵𝐴) / 2)) + ((𝐵𝐴) / 2)) = 𝐵)
9392fveq2d 5515 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) + ((𝐵𝐴) / 2))) = (cos‘𝐵))
94 cosadd 11729 . . . 4 (((𝐵 − ((𝐵𝐴) / 2)) ∈ ℂ ∧ ((𝐵𝐴) / 2) ∈ ℂ) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) + ((𝐵𝐴) / 2))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
9513, 12, 94syl2anc 411 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) + ((𝐵𝐴) / 2))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
9693, 95eqtr3d 2212 . 2 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
977, 12, 12subsub4d 8289 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2)) = (𝐵 − (((𝐵𝐴) / 2) + ((𝐵𝐴) / 2))))
98112halvesd 9153 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (((𝐵𝐴) / 2) + ((𝐵𝐴) / 2)) = (𝐵𝐴))
9998oveq2d 5885 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − (((𝐵𝐴) / 2) + ((𝐵𝐴) / 2))) = (𝐵 − (𝐵𝐴)))
1009recnd 7976 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
1017, 100nncand 8263 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − (𝐵𝐴)) = 𝐴)
10297, 99, 1013eqtrd 2214 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2)) = 𝐴)
103102fveq2d 5515 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2))) = (cos‘𝐴))
104 cossub 11733 . . . 4 (((𝐵 − ((𝐵𝐴) / 2)) ∈ ℂ ∧ ((𝐵𝐴) / 2) ∈ ℂ) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
10513, 12, 104syl2anc 411 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
106103, 105eqtr3d 2212 . 2 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐴) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
10791, 96, 1063brtr4d 4032 1 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 978   = wceq 1353  wcel 2148  wss 3129   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807  *cxr 7981   < clt 7982  cle 7983  cmin 8118  -cneg 8119   / cdiv 8618  2c2 8959  +crp 9640  (,]cioc 9876  [,]cicc 9878  sincsin 11636  cosccos 11637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-ioc 9880  df-ico 9881  df-icc 9882  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-bc 10712  df-ihash 10740  df-shft 10808  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-ef 11640  df-sin 11642  df-cos 11643
This theorem is referenced by:  cosz12  13868
  Copyright terms: Public domain W3C validator