ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos12dec GIF version

Theorem cos12dec 11717
Description: Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.)
Assertion
Ref Expression
cos12dec ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴))

Proof of Theorem cos12dec
StepHypRef Expression
1 1re 7906 . . . . . . . . . . 11 1 ∈ ℝ
2 2re 8935 . . . . . . . . . . 11 2 ∈ ℝ
3 iccssre 9899 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 2 ∈ ℝ) → (1[,]2) ⊆ ℝ)
41, 2, 3mp2an 424 . . . . . . . . . 10 (1[,]2) ⊆ ℝ
54sseli 3143 . . . . . . . . 9 (𝐵 ∈ (1[,]2) → 𝐵 ∈ ℝ)
653ad2ant2 1014 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
76recnd 7935 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
84sseli 3143 . . . . . . . . . . 11 (𝐴 ∈ (1[,]2) → 𝐴 ∈ ℝ)
983ad2ant1 1013 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
106, 9resubcld 8287 . . . . . . . . 9 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ)
1110recnd 7935 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℂ)
1211halfcld 9109 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ∈ ℂ)
137, 12subcld 8217 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ∈ ℂ)
1413coscld 11661 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘(𝐵 − ((𝐵𝐴) / 2))) ∈ ℂ)
1512coscld 11661 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵𝐴) / 2)) ∈ ℂ)
1614, 15mulcld 7927 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) ∈ ℂ)
1713sincld 11660 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (sin‘(𝐵 − ((𝐵𝐴) / 2))) ∈ ℂ)
1812sincld 11660 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (sin‘((𝐵𝐴) / 2)) ∈ ℂ)
1917, 18mulcld 7927 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) ∈ ℂ)
2016, 19negsubd 8223 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
2110rehalfcld 9111 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ∈ ℝ)
226, 21resubcld 8287 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ∈ ℝ)
2322resincld 11673 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (sin‘(𝐵 − ((𝐵𝐴) / 2))) ∈ ℝ)
2421resincld 11673 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (sin‘((𝐵𝐴) / 2)) ∈ ℝ)
2523, 24remulcld 7937 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) ∈ ℝ)
2625renegcld 8286 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) ∈ ℝ)
2722recoscld 11674 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘(𝐵 − ((𝐵𝐴) / 2))) ∈ ℝ)
2821recoscld 11674 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵𝐴) / 2)) ∈ ℝ)
2927, 28remulcld 7937 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) ∈ ℝ)
30 0red 7908 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 ∈ ℝ)
311a1i 9 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 1 ∈ ℝ)
3231rehalfcld 9111 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (1 / 2) ∈ ℝ)
33 simp3 994 . . . . . . . . . . . . 13 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
349, 6posdifd 8438 . . . . . . . . . . . . 13 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
3533, 34mpbid 146 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (𝐵𝐴))
36 halfpos2 9095 . . . . . . . . . . . . 13 ((𝐵𝐴) ∈ ℝ → (0 < (𝐵𝐴) ↔ 0 < ((𝐵𝐴) / 2)))
3710, 36syl 14 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (0 < (𝐵𝐴) ↔ 0 < ((𝐵𝐴) / 2)))
3835, 37mpbid 146 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < ((𝐵𝐴) / 2))
39 2rp 9602 . . . . . . . . . . . . 13 2 ∈ ℝ+
4039a1i 9 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 2 ∈ ℝ+)
412a1i 9 . . . . . . . . . . . . . 14 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 2 ∈ ℝ)
421rexri 7964 . . . . . . . . . . . . . . . 16 1 ∈ ℝ*
432rexri 7964 . . . . . . . . . . . . . . . 16 2 ∈ ℝ*
44 iccleub 9875 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ* ∧ 2 ∈ ℝ*𝐵 ∈ (1[,]2)) → 𝐵 ≤ 2)
4542, 43, 44mp3an12 1322 . . . . . . . . . . . . . . 15 (𝐵 ∈ (1[,]2) → 𝐵 ≤ 2)
46453ad2ant2 1014 . . . . . . . . . . . . . 14 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐵 ≤ 2)
47 iccgelb 9876 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ* ∧ 2 ∈ ℝ*𝐴 ∈ (1[,]2)) → 1 ≤ 𝐴)
4842, 43, 47mp3an12 1322 . . . . . . . . . . . . . . 15 (𝐴 ∈ (1[,]2) → 1 ≤ 𝐴)
49483ad2ant1 1013 . . . . . . . . . . . . . 14 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 1 ≤ 𝐴)
506, 31, 41, 9, 46, 49le2subd 8470 . . . . . . . . . . . . 13 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵𝐴) ≤ (2 − 1))
51 2m1e1 8983 . . . . . . . . . . . . 13 (2 − 1) = 1
5250, 51breqtrdi 4028 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵𝐴) ≤ 1)
5310, 31, 40, 52lediv1dd 9699 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ≤ (1 / 2))
5430, 21, 32, 38, 53ltletrd 8329 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (1 / 2))
55 1mhlfehlf 9083 . . . . . . . . . . 11 (1 − (1 / 2)) = (1 / 2)
56 iccgelb 9876 . . . . . . . . . . . . . 14 ((1 ∈ ℝ* ∧ 2 ∈ ℝ*𝐵 ∈ (1[,]2)) → 1 ≤ 𝐵)
5742, 43, 56mp3an12 1322 . . . . . . . . . . . . 13 (𝐵 ∈ (1[,]2) → 1 ≤ 𝐵)
58573ad2ant2 1014 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 1 ≤ 𝐵)
5931, 21, 6, 32, 58, 53le2subd 8470 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (1 − (1 / 2)) ≤ (𝐵 − ((𝐵𝐴) / 2)))
6055, 59eqbrtrrid 4023 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (1 / 2) ≤ (𝐵 − ((𝐵𝐴) / 2)))
6130, 32, 22, 54, 60ltletrd 8329 . . . . . . . . 9 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (𝐵 − ((𝐵𝐴) / 2)))
6230, 21, 38ltled 8025 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 ≤ ((𝐵𝐴) / 2))
636, 30, 41, 21, 46, 62le2subd 8470 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ≤ (2 − 0))
64 2cn 8936 . . . . . . . . . . 11 2 ∈ ℂ
6564subid1i 8178 . . . . . . . . . 10 (2 − 0) = 2
6663, 65breqtrdi 4028 . . . . . . . . 9 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ≤ 2)
67 0xr 7953 . . . . . . . . . 10 0 ∈ ℝ*
68 elioc2 9880 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → ((𝐵 − ((𝐵𝐴) / 2)) ∈ (0(,]2) ↔ ((𝐵 − ((𝐵𝐴) / 2)) ∈ ℝ ∧ 0 < (𝐵 − ((𝐵𝐴) / 2)) ∧ (𝐵 − ((𝐵𝐴) / 2)) ≤ 2)))
6967, 2, 68mp2an 424 . . . . . . . . 9 ((𝐵 − ((𝐵𝐴) / 2)) ∈ (0(,]2) ↔ ((𝐵 − ((𝐵𝐴) / 2)) ∈ ℝ ∧ 0 < (𝐵 − ((𝐵𝐴) / 2)) ∧ (𝐵 − ((𝐵𝐴) / 2)) ≤ 2))
7022, 61, 66, 69syl3anbrc 1176 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ∈ (0(,]2))
71 sin02gt0 11713 . . . . . . . 8 ((𝐵 − ((𝐵𝐴) / 2)) ∈ (0(,]2) → 0 < (sin‘(𝐵 − ((𝐵𝐴) / 2))))
7270, 71syl 14 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (sin‘(𝐵 − ((𝐵𝐴) / 2))))
73 halfre 9078 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
74 halflt1 9082 . . . . . . . . . . . . 13 (1 / 2) < 1
75 1lt2 9034 . . . . . . . . . . . . 13 1 < 2
7673, 1, 2lttri 8011 . . . . . . . . . . . . 13 (((1 / 2) < 1 ∧ 1 < 2) → (1 / 2) < 2)
7774, 75, 76mp2an 424 . . . . . . . . . . . 12 (1 / 2) < 2
7873, 2, 77ltleii 8009 . . . . . . . . . . 11 (1 / 2) ≤ 2
7978a1i 9 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (1 / 2) ≤ 2)
8021, 32, 41, 53, 79letrd 8030 . . . . . . . . 9 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ≤ 2)
81 elioc2 9880 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (((𝐵𝐴) / 2) ∈ (0(,]2) ↔ (((𝐵𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵𝐴) / 2) ∧ ((𝐵𝐴) / 2) ≤ 2)))
8267, 2, 81mp2an 424 . . . . . . . . 9 (((𝐵𝐴) / 2) ∈ (0(,]2) ↔ (((𝐵𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵𝐴) / 2) ∧ ((𝐵𝐴) / 2) ≤ 2))
8321, 38, 80, 82syl3anbrc 1176 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ∈ (0(,]2))
84 sin02gt0 11713 . . . . . . . 8 (((𝐵𝐴) / 2) ∈ (0(,]2) → 0 < (sin‘((𝐵𝐴) / 2)))
8583, 84syl 14 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (sin‘((𝐵𝐴) / 2)))
8623, 24, 72, 85mulgt0d 8029 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))))
8725lt0neg2d 8422 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (0 < ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) ↔ -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) < 0))
8886, 87mpbid 146 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) < 0)
8926, 30, 25, 88, 86lttrd 8032 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) < ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))))
9026, 25, 29, 89ltadd2dd 8328 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))) < (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
9120, 90eqbrtrrd 4011 . 2 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))) < (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
927, 12npcand 8221 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵 − ((𝐵𝐴) / 2)) + ((𝐵𝐴) / 2)) = 𝐵)
9392fveq2d 5498 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) + ((𝐵𝐴) / 2))) = (cos‘𝐵))
94 cosadd 11687 . . . 4 (((𝐵 − ((𝐵𝐴) / 2)) ∈ ℂ ∧ ((𝐵𝐴) / 2) ∈ ℂ) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) + ((𝐵𝐴) / 2))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
9513, 12, 94syl2anc 409 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) + ((𝐵𝐴) / 2))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
9693, 95eqtr3d 2205 . 2 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
977, 12, 12subsub4d 8248 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2)) = (𝐵 − (((𝐵𝐴) / 2) + ((𝐵𝐴) / 2))))
98112halvesd 9110 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (((𝐵𝐴) / 2) + ((𝐵𝐴) / 2)) = (𝐵𝐴))
9998oveq2d 5866 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − (((𝐵𝐴) / 2) + ((𝐵𝐴) / 2))) = (𝐵 − (𝐵𝐴)))
1009recnd 7935 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
1017, 100nncand 8222 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − (𝐵𝐴)) = 𝐴)
10297, 99, 1013eqtrd 2207 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2)) = 𝐴)
103102fveq2d 5498 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2))) = (cos‘𝐴))
104 cossub 11691 . . . 4 (((𝐵 − ((𝐵𝐴) / 2)) ∈ ℂ ∧ ((𝐵𝐴) / 2) ∈ ℂ) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
10513, 12, 104syl2anc 409 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
106103, 105eqtr3d 2205 . 2 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐴) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
10791, 96, 1063brtr4d 4019 1 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 973   = wceq 1348  wcel 2141  wss 3121   class class class wbr 3987  cfv 5196  (class class class)co 5850  cc 7759  cr 7760  0cc0 7761  1c1 7762   + caddc 7764   · cmul 7766  *cxr 7940   < clt 7941  cle 7942  cmin 8077  -cneg 8078   / cdiv 8576  2c2 8916  +crp 9597  (,]cioc 9833  [,]cicc 9835  sincsin 11594  cosccos 11595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-disj 3965  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-frec 6367  df-1o 6392  df-oadd 6396  df-er 6509  df-en 6715  df-dom 6716  df-fin 6717  df-sup 6957  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-5 8927  df-6 8928  df-7 8929  df-8 8930  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-ioc 9837  df-ico 9838  df-icc 9839  df-fz 9953  df-fzo 10086  df-seqfrec 10389  df-exp 10463  df-fac 10647  df-bc 10669  df-ihash 10697  df-shft 10766  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-clim 11229  df-sumdc 11304  df-ef 11598  df-sin 11600  df-cos 11601
This theorem is referenced by:  cosz12  13454
  Copyright terms: Public domain W3C validator