ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos12dec GIF version

Theorem cos12dec 11933
Description: Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.)
Assertion
Ref Expression
cos12dec ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴))

Proof of Theorem cos12dec
StepHypRef Expression
1 1re 8025 . . . . . . . . . . 11 1 ∈ ℝ
2 2re 9060 . . . . . . . . . . 11 2 ∈ ℝ
3 iccssre 10030 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 2 ∈ ℝ) → (1[,]2) ⊆ ℝ)
41, 2, 3mp2an 426 . . . . . . . . . 10 (1[,]2) ⊆ ℝ
54sseli 3179 . . . . . . . . 9 (𝐵 ∈ (1[,]2) → 𝐵 ∈ ℝ)
653ad2ant2 1021 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
76recnd 8055 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
84sseli 3179 . . . . . . . . . . 11 (𝐴 ∈ (1[,]2) → 𝐴 ∈ ℝ)
983ad2ant1 1020 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
106, 9resubcld 8407 . . . . . . . . 9 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ)
1110recnd 8055 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℂ)
1211halfcld 9236 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ∈ ℂ)
137, 12subcld 8337 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ∈ ℂ)
1413coscld 11876 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘(𝐵 − ((𝐵𝐴) / 2))) ∈ ℂ)
1512coscld 11876 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵𝐴) / 2)) ∈ ℂ)
1614, 15mulcld 8047 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) ∈ ℂ)
1713sincld 11875 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (sin‘(𝐵 − ((𝐵𝐴) / 2))) ∈ ℂ)
1812sincld 11875 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (sin‘((𝐵𝐴) / 2)) ∈ ℂ)
1917, 18mulcld 8047 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) ∈ ℂ)
2016, 19negsubd 8343 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
2110rehalfcld 9238 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ∈ ℝ)
226, 21resubcld 8407 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ∈ ℝ)
2322resincld 11888 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (sin‘(𝐵 − ((𝐵𝐴) / 2))) ∈ ℝ)
2421resincld 11888 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (sin‘((𝐵𝐴) / 2)) ∈ ℝ)
2523, 24remulcld 8057 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) ∈ ℝ)
2625renegcld 8406 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) ∈ ℝ)
2722recoscld 11889 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘(𝐵 − ((𝐵𝐴) / 2))) ∈ ℝ)
2821recoscld 11889 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵𝐴) / 2)) ∈ ℝ)
2927, 28remulcld 8057 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) ∈ ℝ)
30 0red 8027 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 ∈ ℝ)
311a1i 9 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 1 ∈ ℝ)
3231rehalfcld 9238 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (1 / 2) ∈ ℝ)
33 simp3 1001 . . . . . . . . . . . . 13 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
349, 6posdifd 8559 . . . . . . . . . . . . 13 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
3533, 34mpbid 147 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (𝐵𝐴))
36 halfpos2 9221 . . . . . . . . . . . . 13 ((𝐵𝐴) ∈ ℝ → (0 < (𝐵𝐴) ↔ 0 < ((𝐵𝐴) / 2)))
3710, 36syl 14 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (0 < (𝐵𝐴) ↔ 0 < ((𝐵𝐴) / 2)))
3835, 37mpbid 147 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < ((𝐵𝐴) / 2))
39 2rp 9733 . . . . . . . . . . . . 13 2 ∈ ℝ+
4039a1i 9 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 2 ∈ ℝ+)
412a1i 9 . . . . . . . . . . . . . 14 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 2 ∈ ℝ)
421rexri 8084 . . . . . . . . . . . . . . . 16 1 ∈ ℝ*
432rexri 8084 . . . . . . . . . . . . . . . 16 2 ∈ ℝ*
44 iccleub 10006 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ* ∧ 2 ∈ ℝ*𝐵 ∈ (1[,]2)) → 𝐵 ≤ 2)
4542, 43, 44mp3an12 1338 . . . . . . . . . . . . . . 15 (𝐵 ∈ (1[,]2) → 𝐵 ≤ 2)
46453ad2ant2 1021 . . . . . . . . . . . . . 14 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐵 ≤ 2)
47 iccgelb 10007 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ* ∧ 2 ∈ ℝ*𝐴 ∈ (1[,]2)) → 1 ≤ 𝐴)
4842, 43, 47mp3an12 1338 . . . . . . . . . . . . . . 15 (𝐴 ∈ (1[,]2) → 1 ≤ 𝐴)
49483ad2ant1 1020 . . . . . . . . . . . . . 14 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 1 ≤ 𝐴)
506, 31, 41, 9, 46, 49le2subd 8591 . . . . . . . . . . . . 13 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵𝐴) ≤ (2 − 1))
51 2m1e1 9108 . . . . . . . . . . . . 13 (2 − 1) = 1
5250, 51breqtrdi 4074 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵𝐴) ≤ 1)
5310, 31, 40, 52lediv1dd 9830 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ≤ (1 / 2))
5430, 21, 32, 38, 53ltletrd 8450 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (1 / 2))
55 1mhlfehlf 9209 . . . . . . . . . . 11 (1 − (1 / 2)) = (1 / 2)
56 iccgelb 10007 . . . . . . . . . . . . . 14 ((1 ∈ ℝ* ∧ 2 ∈ ℝ*𝐵 ∈ (1[,]2)) → 1 ≤ 𝐵)
5742, 43, 56mp3an12 1338 . . . . . . . . . . . . 13 (𝐵 ∈ (1[,]2) → 1 ≤ 𝐵)
58573ad2ant2 1021 . . . . . . . . . . . 12 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 1 ≤ 𝐵)
5931, 21, 6, 32, 58, 53le2subd 8591 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (1 − (1 / 2)) ≤ (𝐵 − ((𝐵𝐴) / 2)))
6055, 59eqbrtrrid 4069 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (1 / 2) ≤ (𝐵 − ((𝐵𝐴) / 2)))
6130, 32, 22, 54, 60ltletrd 8450 . . . . . . . . 9 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (𝐵 − ((𝐵𝐴) / 2)))
6230, 21, 38ltled 8145 . . . . . . . . . . 11 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 ≤ ((𝐵𝐴) / 2))
636, 30, 41, 21, 46, 62le2subd 8591 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ≤ (2 − 0))
64 2cn 9061 . . . . . . . . . . 11 2 ∈ ℂ
6564subid1i 8298 . . . . . . . . . 10 (2 − 0) = 2
6663, 65breqtrdi 4074 . . . . . . . . 9 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ≤ 2)
67 0xr 8073 . . . . . . . . . 10 0 ∈ ℝ*
68 elioc2 10011 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → ((𝐵 − ((𝐵𝐴) / 2)) ∈ (0(,]2) ↔ ((𝐵 − ((𝐵𝐴) / 2)) ∈ ℝ ∧ 0 < (𝐵 − ((𝐵𝐴) / 2)) ∧ (𝐵 − ((𝐵𝐴) / 2)) ≤ 2)))
6967, 2, 68mp2an 426 . . . . . . . . 9 ((𝐵 − ((𝐵𝐴) / 2)) ∈ (0(,]2) ↔ ((𝐵 − ((𝐵𝐴) / 2)) ∈ ℝ ∧ 0 < (𝐵 − ((𝐵𝐴) / 2)) ∧ (𝐵 − ((𝐵𝐴) / 2)) ≤ 2))
7022, 61, 66, 69syl3anbrc 1183 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − ((𝐵𝐴) / 2)) ∈ (0(,]2))
71 sin02gt0 11929 . . . . . . . 8 ((𝐵 − ((𝐵𝐴) / 2)) ∈ (0(,]2) → 0 < (sin‘(𝐵 − ((𝐵𝐴) / 2))))
7270, 71syl 14 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (sin‘(𝐵 − ((𝐵𝐴) / 2))))
73 halfre 9204 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
74 halflt1 9208 . . . . . . . . . . . . 13 (1 / 2) < 1
75 1lt2 9160 . . . . . . . . . . . . 13 1 < 2
7673, 1, 2lttri 8131 . . . . . . . . . . . . 13 (((1 / 2) < 1 ∧ 1 < 2) → (1 / 2) < 2)
7774, 75, 76mp2an 426 . . . . . . . . . . . 12 (1 / 2) < 2
7873, 2, 77ltleii 8129 . . . . . . . . . . 11 (1 / 2) ≤ 2
7978a1i 9 . . . . . . . . . 10 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (1 / 2) ≤ 2)
8021, 32, 41, 53, 79letrd 8150 . . . . . . . . 9 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ≤ 2)
81 elioc2 10011 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (((𝐵𝐴) / 2) ∈ (0(,]2) ↔ (((𝐵𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵𝐴) / 2) ∧ ((𝐵𝐴) / 2) ≤ 2)))
8267, 2, 81mp2an 426 . . . . . . . . 9 (((𝐵𝐴) / 2) ∈ (0(,]2) ↔ (((𝐵𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵𝐴) / 2) ∧ ((𝐵𝐴) / 2) ≤ 2))
8321, 38, 80, 82syl3anbrc 1183 . . . . . . . 8 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵𝐴) / 2) ∈ (0(,]2))
84 sin02gt0 11929 . . . . . . . 8 (((𝐵𝐴) / 2) ∈ (0(,]2) → 0 < (sin‘((𝐵𝐴) / 2)))
8583, 84syl 14 . . . . . . 7 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < (sin‘((𝐵𝐴) / 2)))
8623, 24, 72, 85mulgt0d 8149 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 0 < ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))))
8725lt0neg2d 8543 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (0 < ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) ↔ -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) < 0))
8886, 87mpbid 147 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) < 0)
8926, 30, 25, 88, 86lttrd 8152 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))) < ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2))))
9026, 25, 29, 89ltadd2dd 8449 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + -((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))) < (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
9120, 90eqbrtrrd 4057 . 2 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))) < (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
927, 12npcand 8341 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵 − ((𝐵𝐴) / 2)) + ((𝐵𝐴) / 2)) = 𝐵)
9392fveq2d 5562 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) + ((𝐵𝐴) / 2))) = (cos‘𝐵))
94 cosadd 11902 . . . 4 (((𝐵 − ((𝐵𝐴) / 2)) ∈ ℂ ∧ ((𝐵𝐴) / 2) ∈ ℂ) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) + ((𝐵𝐴) / 2))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
9513, 12, 94syl2anc 411 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) + ((𝐵𝐴) / 2))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
9693, 95eqtr3d 2231 . 2 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) − ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
977, 12, 12subsub4d 8368 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2)) = (𝐵 − (((𝐵𝐴) / 2) + ((𝐵𝐴) / 2))))
98112halvesd 9237 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (((𝐵𝐴) / 2) + ((𝐵𝐴) / 2)) = (𝐵𝐴))
9998oveq2d 5938 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − (((𝐵𝐴) / 2) + ((𝐵𝐴) / 2))) = (𝐵 − (𝐵𝐴)))
1009recnd 8055 . . . . . 6 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
1017, 100nncand 8342 . . . . 5 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (𝐵 − (𝐵𝐴)) = 𝐴)
10297, 99, 1013eqtrd 2233 . . . 4 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → ((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2)) = 𝐴)
103102fveq2d 5562 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2))) = (cos‘𝐴))
104 cossub 11906 . . . 4 (((𝐵 − ((𝐵𝐴) / 2)) ∈ ℂ ∧ ((𝐵𝐴) / 2) ∈ ℂ) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
10513, 12, 104syl2anc 411 . . 3 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘((𝐵 − ((𝐵𝐴) / 2)) − ((𝐵𝐴) / 2))) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
106103, 105eqtr3d 2231 . 2 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐴) = (((cos‘(𝐵 − ((𝐵𝐴) / 2))) · (cos‘((𝐵𝐴) / 2))) + ((sin‘(𝐵 − ((𝐵𝐴) / 2))) · (sin‘((𝐵𝐴) / 2)))))
10791, 96, 1063brtr4d 4065 1 ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2167  wss 3157   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884  *cxr 8060   < clt 8061  cle 8062  cmin 8197  -cneg 8198   / cdiv 8699  2c2 9041  +crp 9728  (,]cioc 9964  [,]cicc 9966  sincsin 11809  cosccos 11810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ioc 9968  df-ico 9969  df-icc 9970  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-bc 10840  df-ihash 10868  df-shft 10980  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813  df-sin 11815  df-cos 11816
This theorem is referenced by:  cosz12  15016
  Copyright terms: Public domain W3C validator