ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin0pilem2 GIF version

Theorem sin0pilem2 15456
Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
Assertion
Ref Expression
sin0pilem2 𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
Distinct variable group:   𝑥,𝑞

Proof of Theorem sin0pilem2
Dummy variables 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sin0pilem1 15455 . 2 𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))
2 2re 9180 . . . . . . . 8 2 ∈ ℝ
32a1i 9 . . . . . . 7 (𝑝 ∈ (1(,)2) → 2 ∈ ℝ)
4 elioore 10108 . . . . . . 7 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℝ)
53, 4remulcld 8177 . . . . . 6 (𝑝 ∈ (1(,)2) → (2 · 𝑝) ∈ ℝ)
65adantr 276 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 𝑝) ∈ ℝ)
7 2t1e2 9264 . . . . . . 7 (2 · 1) = 2
8 1red 8161 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 1 ∈ ℝ)
9 2rp 9854 . . . . . . . . 9 2 ∈ ℝ+
109a1i 9 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 2 ∈ ℝ+)
11 eliooord 10124 . . . . . . . . 9 (𝑝 ∈ (1(,)2) → (1 < 𝑝𝑝 < 2))
1211simpld 112 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 1 < 𝑝)
138, 4, 10, 12ltmul2dd 9949 . . . . . . 7 (𝑝 ∈ (1(,)2) → (2 · 1) < (2 · 𝑝))
147, 13eqbrtrrid 4119 . . . . . 6 (𝑝 ∈ (1(,)2) → 2 < (2 · 𝑝))
1514adantr 276 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → 2 < (2 · 𝑝))
1611simprd 114 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 𝑝 < 2)
174, 3, 10, 16ltmul2dd 9949 . . . . . . 7 (𝑝 ∈ (1(,)2) → (2 · 𝑝) < (2 · 2))
18 2t2e4 9265 . . . . . . 7 (2 · 2) = 4
1917, 18breqtrdi 4124 . . . . . 6 (𝑝 ∈ (1(,)2) → (2 · 𝑝) < 4)
2019adantr 276 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 𝑝) < 4)
212rexri 8204 . . . . . 6 2 ∈ ℝ*
22 4re 9187 . . . . . . 7 4 ∈ ℝ
2322rexri 8204 . . . . . 6 4 ∈ ℝ*
24 elioo2 10117 . . . . . 6 ((2 ∈ ℝ* ∧ 4 ∈ ℝ*) → ((2 · 𝑝) ∈ (2(,)4) ↔ ((2 · 𝑝) ∈ ℝ ∧ 2 < (2 · 𝑝) ∧ (2 · 𝑝) < 4)))
2521, 23, 24mp2an 426 . . . . 5 ((2 · 𝑝) ∈ (2(,)4) ↔ ((2 · 𝑝) ∈ ℝ ∧ 2 < (2 · 𝑝) ∧ (2 · 𝑝) < 4))
266, 15, 20, 25syl3anbrc 1205 . . . 4 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 𝑝) ∈ (2(,)4))
274recnd 8175 . . . . . . 7 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℂ)
2827adantr 276 . . . . . 6 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → 𝑝 ∈ ℂ)
29 sin2t 12260 . . . . . 6 (𝑝 ∈ ℂ → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
3028, 29syl 14 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
31 simprl 529 . . . . . . . . 9 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (cos‘𝑝) = 0)
3231oveq2d 6017 . . . . . . . 8 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ((sin‘𝑝) · (cos‘𝑝)) = ((sin‘𝑝) · 0))
3328sincld 12221 . . . . . . . . 9 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (sin‘𝑝) ∈ ℂ)
3433mul01d 8539 . . . . . . . 8 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ((sin‘𝑝) · 0) = 0)
3532, 34eqtrd 2262 . . . . . . 7 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ((sin‘𝑝) · (cos‘𝑝)) = 0)
3635oveq2d 6017 . . . . . 6 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = (2 · 0))
37 2cnd 9183 . . . . . . 7 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → 2 ∈ ℂ)
3837mul01d 8539 . . . . . 6 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 0) = 0)
3936, 38eqtrd 2262 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = 0)
4030, 39eqtrd 2262 . . . 4 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (sin‘(2 · 𝑝)) = 0)
41 fveq2 5627 . . . . . . . 8 (𝑦 = 𝑥 → (sin‘𝑦) = (sin‘𝑥))
4241breq2d 4095 . . . . . . 7 (𝑦 = 𝑥 → (0 < (sin‘𝑦) ↔ 0 < (sin‘𝑥)))
43 simprr 531 . . . . . . . 8 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))
4443ad2antrr 488 . . . . . . 7 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))
45 elioore 10108 . . . . . . . . . 10 (𝑥 ∈ (0(,)(2 · 𝑝)) → 𝑥 ∈ ℝ)
4645adantl 277 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 𝑥 ∈ ℝ)
4746adantr 276 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑥 ∈ ℝ)
48 simpr 110 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑝 < 𝑥)
49 eliooord 10124 . . . . . . . . . . 11 (𝑥 ∈ (0(,)(2 · 𝑝)) → (0 < 𝑥𝑥 < (2 · 𝑝)))
5049adantl 277 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → (0 < 𝑥𝑥 < (2 · 𝑝)))
5150adantr 276 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → (0 < 𝑥𝑥 < (2 · 𝑝)))
5251simprd 114 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑥 < (2 · 𝑝))
534rexrd 8196 . . . . . . . . . . 11 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℝ*)
545rexrd 8196 . . . . . . . . . . 11 (𝑝 ∈ (1(,)2) → (2 · 𝑝) ∈ ℝ*)
55 elioo2 10117 . . . . . . . . . . 11 ((𝑝 ∈ ℝ* ∧ (2 · 𝑝) ∈ ℝ*) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5653, 54, 55syl2anc 411 . . . . . . . . . 10 (𝑝 ∈ (1(,)2) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5756adantr 276 . . . . . . . . 9 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5857ad2antrr 488 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5947, 48, 52, 58mpbir3and 1204 . . . . . . 7 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑥 ∈ (𝑝(,)(2 · 𝑝)))
6042, 44, 59rspcdva 2912 . . . . . 6 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 0 < (sin‘𝑥))
6146adantr 276 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 ∈ ℝ)
6250adantr 276 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → (0 < 𝑥𝑥 < (2 · 𝑝)))
6362simpld 112 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 0 < 𝑥)
642a1i 9 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 2 ∈ ℝ)
65 simpr 110 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 < 2)
6661, 64, 65ltled 8265 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 ≤ 2)
67 0xr 8193 . . . . . . . . 9 0 ∈ ℝ*
68 elioc2 10132 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2)))
6967, 2, 68mp2an 426 . . . . . . . 8 (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2))
7061, 63, 66, 69syl3anbrc 1205 . . . . . . 7 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 ∈ (0(,]2))
71 sin02gt0 12275 . . . . . . 7 (𝑥 ∈ (0(,]2) → 0 < (sin‘𝑥))
7270, 71syl 14 . . . . . 6 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 0 < (sin‘𝑥))
7316ad2antrr 488 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 𝑝 < 2)
744ad2antrr 488 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 𝑝 ∈ ℝ)
752a1i 9 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 2 ∈ ℝ)
76 axltwlin 8214 . . . . . . . 8 ((𝑝 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑝 < 2 → (𝑝 < 𝑥𝑥 < 2)))
7774, 75, 46, 76syl3anc 1271 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → (𝑝 < 2 → (𝑝 < 𝑥𝑥 < 2)))
7873, 77mpd 13 . . . . . 6 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → (𝑝 < 𝑥𝑥 < 2))
7960, 72, 78mpjaodan 803 . . . . 5 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 0 < (sin‘𝑥))
8079ralrimiva 2603 . . . 4 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥))
81 fveqeq2 5636 . . . . . 6 (𝑞 = (2 · 𝑝) → ((sin‘𝑞) = 0 ↔ (sin‘(2 · 𝑝)) = 0))
82 oveq2 6009 . . . . . . 7 (𝑞 = (2 · 𝑝) → (0(,)𝑞) = (0(,)(2 · 𝑝)))
8382raleqdv 2734 . . . . . 6 (𝑞 = (2 · 𝑝) → (∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥) ↔ ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥)))
8481, 83anbi12d 473 . . . . 5 (𝑞 = (2 · 𝑝) → (((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)) ↔ ((sin‘(2 · 𝑝)) = 0 ∧ ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥))))
8584rspcev 2907 . . . 4 (((2 · 𝑝) ∈ (2(,)4) ∧ ((sin‘(2 · 𝑝)) = 0 ∧ ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥))) → ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)))
8626, 40, 80, 85syl12anc 1269 . . 3 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)))
8786rexlimiva 2643 . 2 (∃𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦)) → ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)))
881, 87ax-mp 5 1 𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wrex 2509   class class class wbr 4083  cfv 5318  (class class class)co 6001  cc 7997  cr 7998  0cc0 7999  1c1 8000   · cmul 8004  *cxr 8180   < clt 8181  cle 8182  2c2 9161  4c4 9163  +crp 9849  (,)cioo 10084  (,]cioc 10085  sincsin 12155  cosccos 12156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119  ax-pre-suploc 8120  ax-addf 8121  ax-mulf 8122
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-of 6218  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-map 6797  df-pm 6798  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-ioo 10088  df-ioc 10089  df-ico 10090  df-icc 10091  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-fac 10948  df-bc 10970  df-ihash 10998  df-shft 11326  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865  df-ef 12159  df-sin 12161  df-cos 12162  df-rest 13274  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-ntr 14770  df-cn 14862  df-cnp 14863  df-tx 14927  df-cncf 15245  df-limced 15330  df-dvap 15331
This theorem is referenced by:  pilem3  15457
  Copyright terms: Public domain W3C validator