ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin0pilem2 GIF version

Theorem sin0pilem2 13042
Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
Assertion
Ref Expression
sin0pilem2 𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
Distinct variable group:   𝑥,𝑞

Proof of Theorem sin0pilem2
Dummy variables 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sin0pilem1 13041 . 2 𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))
2 2re 8882 . . . . . . . 8 2 ∈ ℝ
32a1i 9 . . . . . . 7 (𝑝 ∈ (1(,)2) → 2 ∈ ℝ)
4 elioore 9794 . . . . . . 7 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℝ)
53, 4remulcld 7887 . . . . . 6 (𝑝 ∈ (1(,)2) → (2 · 𝑝) ∈ ℝ)
65adantr 274 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 𝑝) ∈ ℝ)
7 2t1e2 8965 . . . . . . 7 (2 · 1) = 2
8 1red 7872 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 1 ∈ ℝ)
9 2rp 9543 . . . . . . . . 9 2 ∈ ℝ+
109a1i 9 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 2 ∈ ℝ+)
11 eliooord 9810 . . . . . . . . 9 (𝑝 ∈ (1(,)2) → (1 < 𝑝𝑝 < 2))
1211simpld 111 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 1 < 𝑝)
138, 4, 10, 12ltmul2dd 9638 . . . . . . 7 (𝑝 ∈ (1(,)2) → (2 · 1) < (2 · 𝑝))
147, 13eqbrtrrid 3996 . . . . . 6 (𝑝 ∈ (1(,)2) → 2 < (2 · 𝑝))
1514adantr 274 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → 2 < (2 · 𝑝))
1611simprd 113 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 𝑝 < 2)
174, 3, 10, 16ltmul2dd 9638 . . . . . . 7 (𝑝 ∈ (1(,)2) → (2 · 𝑝) < (2 · 2))
18 2t2e4 8966 . . . . . . 7 (2 · 2) = 4
1917, 18breqtrdi 4001 . . . . . 6 (𝑝 ∈ (1(,)2) → (2 · 𝑝) < 4)
2019adantr 274 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 𝑝) < 4)
212rexri 7914 . . . . . 6 2 ∈ ℝ*
22 4re 8889 . . . . . . 7 4 ∈ ℝ
2322rexri 7914 . . . . . 6 4 ∈ ℝ*
24 elioo2 9803 . . . . . 6 ((2 ∈ ℝ* ∧ 4 ∈ ℝ*) → ((2 · 𝑝) ∈ (2(,)4) ↔ ((2 · 𝑝) ∈ ℝ ∧ 2 < (2 · 𝑝) ∧ (2 · 𝑝) < 4)))
2521, 23, 24mp2an 423 . . . . 5 ((2 · 𝑝) ∈ (2(,)4) ↔ ((2 · 𝑝) ∈ ℝ ∧ 2 < (2 · 𝑝) ∧ (2 · 𝑝) < 4))
266, 15, 20, 25syl3anbrc 1166 . . . 4 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 𝑝) ∈ (2(,)4))
274recnd 7885 . . . . . . 7 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℂ)
2827adantr 274 . . . . . 6 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → 𝑝 ∈ ℂ)
29 sin2t 11623 . . . . . 6 (𝑝 ∈ ℂ → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
3028, 29syl 14 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
31 simprl 521 . . . . . . . . 9 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (cos‘𝑝) = 0)
3231oveq2d 5830 . . . . . . . 8 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ((sin‘𝑝) · (cos‘𝑝)) = ((sin‘𝑝) · 0))
3328sincld 11584 . . . . . . . . 9 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (sin‘𝑝) ∈ ℂ)
3433mul01d 8247 . . . . . . . 8 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ((sin‘𝑝) · 0) = 0)
3532, 34eqtrd 2187 . . . . . . 7 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ((sin‘𝑝) · (cos‘𝑝)) = 0)
3635oveq2d 5830 . . . . . 6 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = (2 · 0))
37 2cnd 8885 . . . . . . 7 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → 2 ∈ ℂ)
3837mul01d 8247 . . . . . 6 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 0) = 0)
3936, 38eqtrd 2187 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = 0)
4030, 39eqtrd 2187 . . . 4 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (sin‘(2 · 𝑝)) = 0)
41 fveq2 5461 . . . . . . . 8 (𝑦 = 𝑥 → (sin‘𝑦) = (sin‘𝑥))
4241breq2d 3973 . . . . . . 7 (𝑦 = 𝑥 → (0 < (sin‘𝑦) ↔ 0 < (sin‘𝑥)))
43 simprr 522 . . . . . . . 8 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))
4443ad2antrr 480 . . . . . . 7 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))
45 elioore 9794 . . . . . . . . . 10 (𝑥 ∈ (0(,)(2 · 𝑝)) → 𝑥 ∈ ℝ)
4645adantl 275 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 𝑥 ∈ ℝ)
4746adantr 274 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑥 ∈ ℝ)
48 simpr 109 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑝 < 𝑥)
49 eliooord 9810 . . . . . . . . . . 11 (𝑥 ∈ (0(,)(2 · 𝑝)) → (0 < 𝑥𝑥 < (2 · 𝑝)))
5049adantl 275 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → (0 < 𝑥𝑥 < (2 · 𝑝)))
5150adantr 274 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → (0 < 𝑥𝑥 < (2 · 𝑝)))
5251simprd 113 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑥 < (2 · 𝑝))
534rexrd 7906 . . . . . . . . . . 11 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℝ*)
545rexrd 7906 . . . . . . . . . . 11 (𝑝 ∈ (1(,)2) → (2 · 𝑝) ∈ ℝ*)
55 elioo2 9803 . . . . . . . . . . 11 ((𝑝 ∈ ℝ* ∧ (2 · 𝑝) ∈ ℝ*) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5653, 54, 55syl2anc 409 . . . . . . . . . 10 (𝑝 ∈ (1(,)2) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5756adantr 274 . . . . . . . . 9 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5857ad2antrr 480 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5947, 48, 52, 58mpbir3and 1165 . . . . . . 7 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑥 ∈ (𝑝(,)(2 · 𝑝)))
6042, 44, 59rspcdva 2818 . . . . . 6 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 0 < (sin‘𝑥))
6146adantr 274 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 ∈ ℝ)
6250adantr 274 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → (0 < 𝑥𝑥 < (2 · 𝑝)))
6362simpld 111 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 0 < 𝑥)
642a1i 9 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 2 ∈ ℝ)
65 simpr 109 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 < 2)
6661, 64, 65ltled 7973 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 ≤ 2)
67 0xr 7903 . . . . . . . . 9 0 ∈ ℝ*
68 elioc2 9818 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2)))
6967, 2, 68mp2an 423 . . . . . . . 8 (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2))
7061, 63, 66, 69syl3anbrc 1166 . . . . . . 7 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 ∈ (0(,]2))
71 sin02gt0 11637 . . . . . . 7 (𝑥 ∈ (0(,]2) → 0 < (sin‘𝑥))
7270, 71syl 14 . . . . . 6 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 0 < (sin‘𝑥))
7316ad2antrr 480 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 𝑝 < 2)
744ad2antrr 480 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 𝑝 ∈ ℝ)
752a1i 9 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 2 ∈ ℝ)
76 axltwlin 7924 . . . . . . . 8 ((𝑝 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑝 < 2 → (𝑝 < 𝑥𝑥 < 2)))
7774, 75, 46, 76syl3anc 1217 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → (𝑝 < 2 → (𝑝 < 𝑥𝑥 < 2)))
7873, 77mpd 13 . . . . . 6 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → (𝑝 < 𝑥𝑥 < 2))
7960, 72, 78mpjaodan 788 . . . . 5 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 0 < (sin‘𝑥))
8079ralrimiva 2527 . . . 4 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥))
81 fveqeq2 5470 . . . . . 6 (𝑞 = (2 · 𝑝) → ((sin‘𝑞) = 0 ↔ (sin‘(2 · 𝑝)) = 0))
82 oveq2 5822 . . . . . . 7 (𝑞 = (2 · 𝑝) → (0(,)𝑞) = (0(,)(2 · 𝑝)))
8382raleqdv 2655 . . . . . 6 (𝑞 = (2 · 𝑝) → (∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥) ↔ ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥)))
8481, 83anbi12d 465 . . . . 5 (𝑞 = (2 · 𝑝) → (((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)) ↔ ((sin‘(2 · 𝑝)) = 0 ∧ ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥))))
8584rspcev 2813 . . . 4 (((2 · 𝑝) ∈ (2(,)4) ∧ ((sin‘(2 · 𝑝)) = 0 ∧ ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥))) → ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)))
8626, 40, 80, 85syl12anc 1215 . . 3 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)))
8786rexlimiva 2566 . 2 (∃𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦)) → ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)))
881, 87ax-mp 5 1 𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  w3a 963   = wceq 1332  wcel 2125  wral 2432  wrex 2433   class class class wbr 3961  cfv 5163  (class class class)co 5814  cc 7709  cr 7710  0cc0 7711  1c1 7712   · cmul 7716  *cxr 7890   < clt 7891  cle 7892  2c2 8863  4c4 8865  +crp 9538  (,)cioo 9770  (,]cioc 9771  sincsin 11518  cosccos 11519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831  ax-pre-suploc 7832  ax-addf 7833  ax-mulf 7834
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-disj 3939  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-of 6022  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-frec 6328  df-1o 6353  df-oadd 6357  df-er 6469  df-map 6584  df-pm 6585  df-en 6675  df-dom 6676  df-fin 6677  df-sup 6916  df-inf 6917  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-5 8874  df-6 8875  df-7 8876  df-8 8877  df-9 8878  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-xneg 9657  df-xadd 9658  df-ioo 9774  df-ioc 9775  df-ico 9776  df-icc 9777  df-fz 9891  df-fzo 10020  df-seqfrec 10323  df-exp 10397  df-fac 10577  df-bc 10599  df-ihash 10627  df-shft 10692  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-clim 11153  df-sumdc 11228  df-ef 11522  df-sin 11524  df-cos 11525  df-rest 12292  df-topgen 12311  df-psmet 12326  df-xmet 12327  df-met 12328  df-bl 12329  df-mopn 12330  df-top 12335  df-topon 12348  df-bases 12380  df-ntr 12435  df-cn 12527  df-cnp 12528  df-tx 12592  df-cncf 12897  df-limced 12964  df-dvap 12965
This theorem is referenced by:  pilem3  13043
  Copyright terms: Public domain W3C validator