ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin0pilem2 GIF version

Theorem sin0pilem2 15018
Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
Assertion
Ref Expression
sin0pilem2 𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
Distinct variable group:   𝑥,𝑞

Proof of Theorem sin0pilem2
Dummy variables 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sin0pilem1 15017 . 2 𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))
2 2re 9060 . . . . . . . 8 2 ∈ ℝ
32a1i 9 . . . . . . 7 (𝑝 ∈ (1(,)2) → 2 ∈ ℝ)
4 elioore 9987 . . . . . . 7 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℝ)
53, 4remulcld 8057 . . . . . 6 (𝑝 ∈ (1(,)2) → (2 · 𝑝) ∈ ℝ)
65adantr 276 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 𝑝) ∈ ℝ)
7 2t1e2 9144 . . . . . . 7 (2 · 1) = 2
8 1red 8041 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 1 ∈ ℝ)
9 2rp 9733 . . . . . . . . 9 2 ∈ ℝ+
109a1i 9 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 2 ∈ ℝ+)
11 eliooord 10003 . . . . . . . . 9 (𝑝 ∈ (1(,)2) → (1 < 𝑝𝑝 < 2))
1211simpld 112 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 1 < 𝑝)
138, 4, 10, 12ltmul2dd 9828 . . . . . . 7 (𝑝 ∈ (1(,)2) → (2 · 1) < (2 · 𝑝))
147, 13eqbrtrrid 4069 . . . . . 6 (𝑝 ∈ (1(,)2) → 2 < (2 · 𝑝))
1514adantr 276 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → 2 < (2 · 𝑝))
1611simprd 114 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 𝑝 < 2)
174, 3, 10, 16ltmul2dd 9828 . . . . . . 7 (𝑝 ∈ (1(,)2) → (2 · 𝑝) < (2 · 2))
18 2t2e4 9145 . . . . . . 7 (2 · 2) = 4
1917, 18breqtrdi 4074 . . . . . 6 (𝑝 ∈ (1(,)2) → (2 · 𝑝) < 4)
2019adantr 276 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 𝑝) < 4)
212rexri 8084 . . . . . 6 2 ∈ ℝ*
22 4re 9067 . . . . . . 7 4 ∈ ℝ
2322rexri 8084 . . . . . 6 4 ∈ ℝ*
24 elioo2 9996 . . . . . 6 ((2 ∈ ℝ* ∧ 4 ∈ ℝ*) → ((2 · 𝑝) ∈ (2(,)4) ↔ ((2 · 𝑝) ∈ ℝ ∧ 2 < (2 · 𝑝) ∧ (2 · 𝑝) < 4)))
2521, 23, 24mp2an 426 . . . . 5 ((2 · 𝑝) ∈ (2(,)4) ↔ ((2 · 𝑝) ∈ ℝ ∧ 2 < (2 · 𝑝) ∧ (2 · 𝑝) < 4))
266, 15, 20, 25syl3anbrc 1183 . . . 4 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 𝑝) ∈ (2(,)4))
274recnd 8055 . . . . . . 7 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℂ)
2827adantr 276 . . . . . 6 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → 𝑝 ∈ ℂ)
29 sin2t 11914 . . . . . 6 (𝑝 ∈ ℂ → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
3028, 29syl 14 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
31 simprl 529 . . . . . . . . 9 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (cos‘𝑝) = 0)
3231oveq2d 5938 . . . . . . . 8 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ((sin‘𝑝) · (cos‘𝑝)) = ((sin‘𝑝) · 0))
3328sincld 11875 . . . . . . . . 9 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (sin‘𝑝) ∈ ℂ)
3433mul01d 8419 . . . . . . . 8 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ((sin‘𝑝) · 0) = 0)
3532, 34eqtrd 2229 . . . . . . 7 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ((sin‘𝑝) · (cos‘𝑝)) = 0)
3635oveq2d 5938 . . . . . 6 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = (2 · 0))
37 2cnd 9063 . . . . . . 7 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → 2 ∈ ℂ)
3837mul01d 8419 . . . . . 6 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 0) = 0)
3936, 38eqtrd 2229 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = 0)
4030, 39eqtrd 2229 . . . 4 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (sin‘(2 · 𝑝)) = 0)
41 fveq2 5558 . . . . . . . 8 (𝑦 = 𝑥 → (sin‘𝑦) = (sin‘𝑥))
4241breq2d 4045 . . . . . . 7 (𝑦 = 𝑥 → (0 < (sin‘𝑦) ↔ 0 < (sin‘𝑥)))
43 simprr 531 . . . . . . . 8 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))
4443ad2antrr 488 . . . . . . 7 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))
45 elioore 9987 . . . . . . . . . 10 (𝑥 ∈ (0(,)(2 · 𝑝)) → 𝑥 ∈ ℝ)
4645adantl 277 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 𝑥 ∈ ℝ)
4746adantr 276 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑥 ∈ ℝ)
48 simpr 110 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑝 < 𝑥)
49 eliooord 10003 . . . . . . . . . . 11 (𝑥 ∈ (0(,)(2 · 𝑝)) → (0 < 𝑥𝑥 < (2 · 𝑝)))
5049adantl 277 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → (0 < 𝑥𝑥 < (2 · 𝑝)))
5150adantr 276 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → (0 < 𝑥𝑥 < (2 · 𝑝)))
5251simprd 114 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑥 < (2 · 𝑝))
534rexrd 8076 . . . . . . . . . . 11 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℝ*)
545rexrd 8076 . . . . . . . . . . 11 (𝑝 ∈ (1(,)2) → (2 · 𝑝) ∈ ℝ*)
55 elioo2 9996 . . . . . . . . . . 11 ((𝑝 ∈ ℝ* ∧ (2 · 𝑝) ∈ ℝ*) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5653, 54, 55syl2anc 411 . . . . . . . . . 10 (𝑝 ∈ (1(,)2) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5756adantr 276 . . . . . . . . 9 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5857ad2antrr 488 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5947, 48, 52, 58mpbir3and 1182 . . . . . . 7 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑥 ∈ (𝑝(,)(2 · 𝑝)))
6042, 44, 59rspcdva 2873 . . . . . 6 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 0 < (sin‘𝑥))
6146adantr 276 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 ∈ ℝ)
6250adantr 276 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → (0 < 𝑥𝑥 < (2 · 𝑝)))
6362simpld 112 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 0 < 𝑥)
642a1i 9 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 2 ∈ ℝ)
65 simpr 110 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 < 2)
6661, 64, 65ltled 8145 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 ≤ 2)
67 0xr 8073 . . . . . . . . 9 0 ∈ ℝ*
68 elioc2 10011 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2)))
6967, 2, 68mp2an 426 . . . . . . . 8 (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2))
7061, 63, 66, 69syl3anbrc 1183 . . . . . . 7 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 ∈ (0(,]2))
71 sin02gt0 11929 . . . . . . 7 (𝑥 ∈ (0(,]2) → 0 < (sin‘𝑥))
7270, 71syl 14 . . . . . 6 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 0 < (sin‘𝑥))
7316ad2antrr 488 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 𝑝 < 2)
744ad2antrr 488 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 𝑝 ∈ ℝ)
752a1i 9 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 2 ∈ ℝ)
76 axltwlin 8094 . . . . . . . 8 ((𝑝 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑝 < 2 → (𝑝 < 𝑥𝑥 < 2)))
7774, 75, 46, 76syl3anc 1249 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → (𝑝 < 2 → (𝑝 < 𝑥𝑥 < 2)))
7873, 77mpd 13 . . . . . 6 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → (𝑝 < 𝑥𝑥 < 2))
7960, 72, 78mpjaodan 799 . . . . 5 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 0 < (sin‘𝑥))
8079ralrimiva 2570 . . . 4 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥))
81 fveqeq2 5567 . . . . . 6 (𝑞 = (2 · 𝑝) → ((sin‘𝑞) = 0 ↔ (sin‘(2 · 𝑝)) = 0))
82 oveq2 5930 . . . . . . 7 (𝑞 = (2 · 𝑝) → (0(,)𝑞) = (0(,)(2 · 𝑝)))
8382raleqdv 2699 . . . . . 6 (𝑞 = (2 · 𝑝) → (∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥) ↔ ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥)))
8481, 83anbi12d 473 . . . . 5 (𝑞 = (2 · 𝑝) → (((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)) ↔ ((sin‘(2 · 𝑝)) = 0 ∧ ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥))))
8584rspcev 2868 . . . 4 (((2 · 𝑝) ∈ (2(,)4) ∧ ((sin‘(2 · 𝑝)) = 0 ∧ ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥))) → ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)))
8626, 40, 80, 85syl12anc 1247 . . 3 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)))
8786rexlimiva 2609 . 2 (∃𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦)) → ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)))
881, 87ax-mp 5 1 𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2167  wral 2475  wrex 2476   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  1c1 7880   · cmul 7884  *cxr 8060   < clt 8061  cle 8062  2c2 9041  4c4 9043  +crp 9728  (,)cioo 9963  (,]cioc 9964  sincsin 11809  cosccos 11810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-pre-suploc 8000  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-map 6709  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-ioo 9967  df-ioc 9968  df-ico 9969  df-icc 9970  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-bc 10840  df-ihash 10868  df-shft 10980  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813  df-sin 11815  df-cos 11816  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-tx 14489  df-cncf 14807  df-limced 14892  df-dvap 14893
This theorem is referenced by:  pilem3  15019
  Copyright terms: Public domain W3C validator