ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin0pilem2 GIF version

Theorem sin0pilem2 15287
Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
Assertion
Ref Expression
sin0pilem2 𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
Distinct variable group:   𝑥,𝑞

Proof of Theorem sin0pilem2
Dummy variables 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sin0pilem1 15286 . 2 𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))
2 2re 9108 . . . . . . . 8 2 ∈ ℝ
32a1i 9 . . . . . . 7 (𝑝 ∈ (1(,)2) → 2 ∈ ℝ)
4 elioore 10036 . . . . . . 7 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℝ)
53, 4remulcld 8105 . . . . . 6 (𝑝 ∈ (1(,)2) → (2 · 𝑝) ∈ ℝ)
65adantr 276 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 𝑝) ∈ ℝ)
7 2t1e2 9192 . . . . . . 7 (2 · 1) = 2
8 1red 8089 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 1 ∈ ℝ)
9 2rp 9782 . . . . . . . . 9 2 ∈ ℝ+
109a1i 9 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 2 ∈ ℝ+)
11 eliooord 10052 . . . . . . . . 9 (𝑝 ∈ (1(,)2) → (1 < 𝑝𝑝 < 2))
1211simpld 112 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 1 < 𝑝)
138, 4, 10, 12ltmul2dd 9877 . . . . . . 7 (𝑝 ∈ (1(,)2) → (2 · 1) < (2 · 𝑝))
147, 13eqbrtrrid 4081 . . . . . 6 (𝑝 ∈ (1(,)2) → 2 < (2 · 𝑝))
1514adantr 276 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → 2 < (2 · 𝑝))
1611simprd 114 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 𝑝 < 2)
174, 3, 10, 16ltmul2dd 9877 . . . . . . 7 (𝑝 ∈ (1(,)2) → (2 · 𝑝) < (2 · 2))
18 2t2e4 9193 . . . . . . 7 (2 · 2) = 4
1917, 18breqtrdi 4086 . . . . . 6 (𝑝 ∈ (1(,)2) → (2 · 𝑝) < 4)
2019adantr 276 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 𝑝) < 4)
212rexri 8132 . . . . . 6 2 ∈ ℝ*
22 4re 9115 . . . . . . 7 4 ∈ ℝ
2322rexri 8132 . . . . . 6 4 ∈ ℝ*
24 elioo2 10045 . . . . . 6 ((2 ∈ ℝ* ∧ 4 ∈ ℝ*) → ((2 · 𝑝) ∈ (2(,)4) ↔ ((2 · 𝑝) ∈ ℝ ∧ 2 < (2 · 𝑝) ∧ (2 · 𝑝) < 4)))
2521, 23, 24mp2an 426 . . . . 5 ((2 · 𝑝) ∈ (2(,)4) ↔ ((2 · 𝑝) ∈ ℝ ∧ 2 < (2 · 𝑝) ∧ (2 · 𝑝) < 4))
266, 15, 20, 25syl3anbrc 1184 . . . 4 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 𝑝) ∈ (2(,)4))
274recnd 8103 . . . . . . 7 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℂ)
2827adantr 276 . . . . . 6 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → 𝑝 ∈ ℂ)
29 sin2t 12093 . . . . . 6 (𝑝 ∈ ℂ → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
3028, 29syl 14 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
31 simprl 529 . . . . . . . . 9 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (cos‘𝑝) = 0)
3231oveq2d 5962 . . . . . . . 8 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ((sin‘𝑝) · (cos‘𝑝)) = ((sin‘𝑝) · 0))
3328sincld 12054 . . . . . . . . 9 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (sin‘𝑝) ∈ ℂ)
3433mul01d 8467 . . . . . . . 8 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ((sin‘𝑝) · 0) = 0)
3532, 34eqtrd 2238 . . . . . . 7 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ((sin‘𝑝) · (cos‘𝑝)) = 0)
3635oveq2d 5962 . . . . . 6 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = (2 · 0))
37 2cnd 9111 . . . . . . 7 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → 2 ∈ ℂ)
3837mul01d 8467 . . . . . 6 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 0) = 0)
3936, 38eqtrd 2238 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = 0)
4030, 39eqtrd 2238 . . . 4 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (sin‘(2 · 𝑝)) = 0)
41 fveq2 5578 . . . . . . . 8 (𝑦 = 𝑥 → (sin‘𝑦) = (sin‘𝑥))
4241breq2d 4057 . . . . . . 7 (𝑦 = 𝑥 → (0 < (sin‘𝑦) ↔ 0 < (sin‘𝑥)))
43 simprr 531 . . . . . . . 8 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))
4443ad2antrr 488 . . . . . . 7 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))
45 elioore 10036 . . . . . . . . . 10 (𝑥 ∈ (0(,)(2 · 𝑝)) → 𝑥 ∈ ℝ)
4645adantl 277 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 𝑥 ∈ ℝ)
4746adantr 276 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑥 ∈ ℝ)
48 simpr 110 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑝 < 𝑥)
49 eliooord 10052 . . . . . . . . . . 11 (𝑥 ∈ (0(,)(2 · 𝑝)) → (0 < 𝑥𝑥 < (2 · 𝑝)))
5049adantl 277 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → (0 < 𝑥𝑥 < (2 · 𝑝)))
5150adantr 276 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → (0 < 𝑥𝑥 < (2 · 𝑝)))
5251simprd 114 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑥 < (2 · 𝑝))
534rexrd 8124 . . . . . . . . . . 11 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℝ*)
545rexrd 8124 . . . . . . . . . . 11 (𝑝 ∈ (1(,)2) → (2 · 𝑝) ∈ ℝ*)
55 elioo2 10045 . . . . . . . . . . 11 ((𝑝 ∈ ℝ* ∧ (2 · 𝑝) ∈ ℝ*) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5653, 54, 55syl2anc 411 . . . . . . . . . 10 (𝑝 ∈ (1(,)2) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5756adantr 276 . . . . . . . . 9 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5857ad2antrr 488 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5947, 48, 52, 58mpbir3and 1183 . . . . . . 7 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑥 ∈ (𝑝(,)(2 · 𝑝)))
6042, 44, 59rspcdva 2882 . . . . . 6 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 0 < (sin‘𝑥))
6146adantr 276 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 ∈ ℝ)
6250adantr 276 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → (0 < 𝑥𝑥 < (2 · 𝑝)))
6362simpld 112 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 0 < 𝑥)
642a1i 9 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 2 ∈ ℝ)
65 simpr 110 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 < 2)
6661, 64, 65ltled 8193 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 ≤ 2)
67 0xr 8121 . . . . . . . . 9 0 ∈ ℝ*
68 elioc2 10060 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2)))
6967, 2, 68mp2an 426 . . . . . . . 8 (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2))
7061, 63, 66, 69syl3anbrc 1184 . . . . . . 7 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 ∈ (0(,]2))
71 sin02gt0 12108 . . . . . . 7 (𝑥 ∈ (0(,]2) → 0 < (sin‘𝑥))
7270, 71syl 14 . . . . . 6 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 0 < (sin‘𝑥))
7316ad2antrr 488 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 𝑝 < 2)
744ad2antrr 488 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 𝑝 ∈ ℝ)
752a1i 9 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 2 ∈ ℝ)
76 axltwlin 8142 . . . . . . . 8 ((𝑝 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑝 < 2 → (𝑝 < 𝑥𝑥 < 2)))
7774, 75, 46, 76syl3anc 1250 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → (𝑝 < 2 → (𝑝 < 𝑥𝑥 < 2)))
7873, 77mpd 13 . . . . . 6 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → (𝑝 < 𝑥𝑥 < 2))
7960, 72, 78mpjaodan 800 . . . . 5 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 0 < (sin‘𝑥))
8079ralrimiva 2579 . . . 4 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥))
81 fveqeq2 5587 . . . . . 6 (𝑞 = (2 · 𝑝) → ((sin‘𝑞) = 0 ↔ (sin‘(2 · 𝑝)) = 0))
82 oveq2 5954 . . . . . . 7 (𝑞 = (2 · 𝑝) → (0(,)𝑞) = (0(,)(2 · 𝑝)))
8382raleqdv 2708 . . . . . 6 (𝑞 = (2 · 𝑝) → (∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥) ↔ ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥)))
8481, 83anbi12d 473 . . . . 5 (𝑞 = (2 · 𝑝) → (((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)) ↔ ((sin‘(2 · 𝑝)) = 0 ∧ ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥))))
8584rspcev 2877 . . . 4 (((2 · 𝑝) ∈ (2(,)4) ∧ ((sin‘(2 · 𝑝)) = 0 ∧ ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥))) → ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)))
8626, 40, 80, 85syl12anc 1248 . . 3 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)))
8786rexlimiva 2618 . 2 (∃𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦)) → ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)))
881, 87ax-mp 5 1 𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2176  wral 2484  wrex 2485   class class class wbr 4045  cfv 5272  (class class class)co 5946  cc 7925  cr 7926  0cc0 7927  1c1 7928   · cmul 7932  *cxr 8108   < clt 8109  cle 8110  2c2 9089  4c4 9091  +crp 9777  (,)cioo 10012  (,]cioc 10013  sincsin 11988  cosccos 11989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047  ax-pre-suploc 8048  ax-addf 8049  ax-mulf 8050
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-disj 4022  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-of 6160  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-map 6739  df-pm 6740  df-en 6830  df-dom 6831  df-fin 6832  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-7 9102  df-8 9103  df-9 9104  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-xneg 9896  df-xadd 9897  df-ioo 10016  df-ioc 10017  df-ico 10018  df-icc 10019  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-fac 10873  df-bc 10895  df-ihash 10923  df-shft 11159  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-sumdc 11698  df-ef 11992  df-sin 11994  df-cos 11995  df-rest 13106  df-topgen 13125  df-psmet 14338  df-xmet 14339  df-met 14340  df-bl 14341  df-mopn 14342  df-top 14503  df-topon 14516  df-bases 14548  df-ntr 14601  df-cn 14693  df-cnp 14694  df-tx 14758  df-cncf 15076  df-limced 15161  df-dvap 15162
This theorem is referenced by:  pilem3  15288
  Copyright terms: Public domain W3C validator