ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin0pilem2 GIF version

Theorem sin0pilem2 13870
Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
Assertion
Ref Expression
sin0pilem2 𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
Distinct variable group:   𝑥,𝑞

Proof of Theorem sin0pilem2
Dummy variables 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sin0pilem1 13869 . 2 𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))
2 2re 8978 . . . . . . . 8 2 ∈ ℝ
32a1i 9 . . . . . . 7 (𝑝 ∈ (1(,)2) → 2 ∈ ℝ)
4 elioore 9899 . . . . . . 7 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℝ)
53, 4remulcld 7978 . . . . . 6 (𝑝 ∈ (1(,)2) → (2 · 𝑝) ∈ ℝ)
65adantr 276 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 𝑝) ∈ ℝ)
7 2t1e2 9061 . . . . . . 7 (2 · 1) = 2
8 1red 7963 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 1 ∈ ℝ)
9 2rp 9645 . . . . . . . . 9 2 ∈ ℝ+
109a1i 9 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 2 ∈ ℝ+)
11 eliooord 9915 . . . . . . . . 9 (𝑝 ∈ (1(,)2) → (1 < 𝑝𝑝 < 2))
1211simpld 112 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 1 < 𝑝)
138, 4, 10, 12ltmul2dd 9740 . . . . . . 7 (𝑝 ∈ (1(,)2) → (2 · 1) < (2 · 𝑝))
147, 13eqbrtrrid 4036 . . . . . 6 (𝑝 ∈ (1(,)2) → 2 < (2 · 𝑝))
1514adantr 276 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → 2 < (2 · 𝑝))
1611simprd 114 . . . . . . . 8 (𝑝 ∈ (1(,)2) → 𝑝 < 2)
174, 3, 10, 16ltmul2dd 9740 . . . . . . 7 (𝑝 ∈ (1(,)2) → (2 · 𝑝) < (2 · 2))
18 2t2e4 9062 . . . . . . 7 (2 · 2) = 4
1917, 18breqtrdi 4041 . . . . . 6 (𝑝 ∈ (1(,)2) → (2 · 𝑝) < 4)
2019adantr 276 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 𝑝) < 4)
212rexri 8005 . . . . . 6 2 ∈ ℝ*
22 4re 8985 . . . . . . 7 4 ∈ ℝ
2322rexri 8005 . . . . . 6 4 ∈ ℝ*
24 elioo2 9908 . . . . . 6 ((2 ∈ ℝ* ∧ 4 ∈ ℝ*) → ((2 · 𝑝) ∈ (2(,)4) ↔ ((2 · 𝑝) ∈ ℝ ∧ 2 < (2 · 𝑝) ∧ (2 · 𝑝) < 4)))
2521, 23, 24mp2an 426 . . . . 5 ((2 · 𝑝) ∈ (2(,)4) ↔ ((2 · 𝑝) ∈ ℝ ∧ 2 < (2 · 𝑝) ∧ (2 · 𝑝) < 4))
266, 15, 20, 25syl3anbrc 1181 . . . 4 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 𝑝) ∈ (2(,)4))
274recnd 7976 . . . . . . 7 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℂ)
2827adantr 276 . . . . . 6 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → 𝑝 ∈ ℂ)
29 sin2t 11741 . . . . . 6 (𝑝 ∈ ℂ → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
3028, 29syl 14 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
31 simprl 529 . . . . . . . . 9 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (cos‘𝑝) = 0)
3231oveq2d 5885 . . . . . . . 8 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ((sin‘𝑝) · (cos‘𝑝)) = ((sin‘𝑝) · 0))
3328sincld 11702 . . . . . . . . 9 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (sin‘𝑝) ∈ ℂ)
3433mul01d 8340 . . . . . . . 8 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ((sin‘𝑝) · 0) = 0)
3532, 34eqtrd 2210 . . . . . . 7 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ((sin‘𝑝) · (cos‘𝑝)) = 0)
3635oveq2d 5885 . . . . . 6 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = (2 · 0))
37 2cnd 8981 . . . . . . 7 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → 2 ∈ ℂ)
3837mul01d 8340 . . . . . 6 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · 0) = 0)
3936, 38eqtrd 2210 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = 0)
4030, 39eqtrd 2210 . . . 4 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (sin‘(2 · 𝑝)) = 0)
41 fveq2 5511 . . . . . . . 8 (𝑦 = 𝑥 → (sin‘𝑦) = (sin‘𝑥))
4241breq2d 4012 . . . . . . 7 (𝑦 = 𝑥 → (0 < (sin‘𝑦) ↔ 0 < (sin‘𝑥)))
43 simprr 531 . . . . . . . 8 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))
4443ad2antrr 488 . . . . . . 7 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))
45 elioore 9899 . . . . . . . . . 10 (𝑥 ∈ (0(,)(2 · 𝑝)) → 𝑥 ∈ ℝ)
4645adantl 277 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 𝑥 ∈ ℝ)
4746adantr 276 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑥 ∈ ℝ)
48 simpr 110 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑝 < 𝑥)
49 eliooord 9915 . . . . . . . . . . 11 (𝑥 ∈ (0(,)(2 · 𝑝)) → (0 < 𝑥𝑥 < (2 · 𝑝)))
5049adantl 277 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → (0 < 𝑥𝑥 < (2 · 𝑝)))
5150adantr 276 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → (0 < 𝑥𝑥 < (2 · 𝑝)))
5251simprd 114 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑥 < (2 · 𝑝))
534rexrd 7997 . . . . . . . . . . 11 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℝ*)
545rexrd 7997 . . . . . . . . . . 11 (𝑝 ∈ (1(,)2) → (2 · 𝑝) ∈ ℝ*)
55 elioo2 9908 . . . . . . . . . . 11 ((𝑝 ∈ ℝ* ∧ (2 · 𝑝) ∈ ℝ*) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5653, 54, 55syl2anc 411 . . . . . . . . . 10 (𝑝 ∈ (1(,)2) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5756adantr 276 . . . . . . . . 9 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5857ad2antrr 488 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → (𝑥 ∈ (𝑝(,)(2 · 𝑝)) ↔ (𝑥 ∈ ℝ ∧ 𝑝 < 𝑥𝑥 < (2 · 𝑝))))
5947, 48, 52, 58mpbir3and 1180 . . . . . . 7 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 𝑥 ∈ (𝑝(,)(2 · 𝑝)))
6042, 44, 59rspcdva 2846 . . . . . 6 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑝 < 𝑥) → 0 < (sin‘𝑥))
6146adantr 276 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 ∈ ℝ)
6250adantr 276 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → (0 < 𝑥𝑥 < (2 · 𝑝)))
6362simpld 112 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 0 < 𝑥)
642a1i 9 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 2 ∈ ℝ)
65 simpr 110 . . . . . . . . 9 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 < 2)
6661, 64, 65ltled 8066 . . . . . . . 8 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 ≤ 2)
67 0xr 7994 . . . . . . . . 9 0 ∈ ℝ*
68 elioc2 9923 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2)))
6967, 2, 68mp2an 426 . . . . . . . 8 (𝑥 ∈ (0(,]2) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 ≤ 2))
7061, 63, 66, 69syl3anbrc 1181 . . . . . . 7 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 𝑥 ∈ (0(,]2))
71 sin02gt0 11755 . . . . . . 7 (𝑥 ∈ (0(,]2) → 0 < (sin‘𝑥))
7270, 71syl 14 . . . . . 6 ((((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) ∧ 𝑥 < 2) → 0 < (sin‘𝑥))
7316ad2antrr 488 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 𝑝 < 2)
744ad2antrr 488 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 𝑝 ∈ ℝ)
752a1i 9 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 2 ∈ ℝ)
76 axltwlin 8015 . . . . . . . 8 ((𝑝 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑝 < 2 → (𝑝 < 𝑥𝑥 < 2)))
7774, 75, 46, 76syl3anc 1238 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → (𝑝 < 2 → (𝑝 < 𝑥𝑥 < 2)))
7873, 77mpd 13 . . . . . 6 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → (𝑝 < 𝑥𝑥 < 2))
7960, 72, 78mpjaodan 798 . . . . 5 (((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) ∧ 𝑥 ∈ (0(,)(2 · 𝑝))) → 0 < (sin‘𝑥))
8079ralrimiva 2550 . . . 4 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥))
81 fveqeq2 5520 . . . . . 6 (𝑞 = (2 · 𝑝) → ((sin‘𝑞) = 0 ↔ (sin‘(2 · 𝑝)) = 0))
82 oveq2 5877 . . . . . . 7 (𝑞 = (2 · 𝑝) → (0(,)𝑞) = (0(,)(2 · 𝑝)))
8382raleqdv 2678 . . . . . 6 (𝑞 = (2 · 𝑝) → (∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥) ↔ ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥)))
8481, 83anbi12d 473 . . . . 5 (𝑞 = (2 · 𝑝) → (((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)) ↔ ((sin‘(2 · 𝑝)) = 0 ∧ ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥))))
8584rspcev 2841 . . . 4 (((2 · 𝑝) ∈ (2(,)4) ∧ ((sin‘(2 · 𝑝)) = 0 ∧ ∀𝑥 ∈ (0(,)(2 · 𝑝))0 < (sin‘𝑥))) → ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)))
8626, 40, 80, 85syl12anc 1236 . . 3 ((𝑝 ∈ (1(,)2) ∧ ((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦))) → ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)))
8786rexlimiva 2589 . 2 (∃𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑦 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑦)) → ∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)))
881, 87ax-mp 5 1 𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148  wral 2455  wrex 2456   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   · cmul 7807  *cxr 7981   < clt 7982  cle 7983  2c2 8959  4c4 8961  +crp 9640  (,)cioo 9875  (,]cioc 9876  sincsin 11636  cosccos 11637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922  ax-pre-suploc 7923  ax-addf 7924  ax-mulf 7925
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-of 6077  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-map 6644  df-pm 6645  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-9 8974  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-xneg 9759  df-xadd 9760  df-ioo 9879  df-ioc 9880  df-ico 9881  df-icc 9882  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-bc 10712  df-ihash 10740  df-shft 10808  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-ef 11640  df-sin 11642  df-cos 11643  df-rest 12638  df-topgen 12657  df-psmet 13154  df-xmet 13155  df-met 13156  df-bl 13157  df-mopn 13158  df-top 13163  df-topon 13176  df-bases 13208  df-ntr 13263  df-cn 13355  df-cnp 13356  df-tx 13420  df-cncf 13725  df-limced 13792  df-dvap 13793
This theorem is referenced by:  pilem3  13871
  Copyright terms: Public domain W3C validator