| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrrdi | GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| Ref | Expression |
|---|---|
| breqtrrdi.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| breqtrrdi.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| breqtrrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrrdi.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | breqtrrdi.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2200 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | breqtrdi 4075 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 class class class wbr 4034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: enpr2d 6885 fiunsnnn 6951 exmidpw2en 6982 unsnfi 6989 eninl 7172 eninr 7173 difinfinf 7176 exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 dju1en 7296 djucomen 7299 djuassen 7300 xpdjuen 7301 gtndiv 9438 intqfrac2 10428 uzenom 10534 xrmaxiflemval 11432 ege2le3 11853 eirraplem 11959 bitsfzo 12137 pcprendvds 12484 pcpremul 12487 pcfaclem 12543 infpnlem2 12554 2strstr1g 12824 lmcn2 14600 dveflem 15046 tangtx 15158 ioocosf1o 15174 lgsdirprm 15359 sbthom 15757 nconstwlpolemgt0 15795 |
| Copyright terms: Public domain | W3C validator |