| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrrdi | GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| Ref | Expression |
|---|---|
| breqtrrdi.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| breqtrrdi.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| breqtrrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrrdi.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | breqtrrdi.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2200 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | breqtrdi 4075 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 class class class wbr 4034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: enpr2d 6878 fiunsnnn 6944 exmidpw2en 6975 unsnfi 6982 eninl 7165 eninr 7166 difinfinf 7169 exmidfodomrlemr 7272 exmidfodomrlemrALT 7273 dju1en 7283 djucomen 7286 djuassen 7287 xpdjuen 7288 gtndiv 9424 intqfrac2 10414 uzenom 10520 xrmaxiflemval 11418 ege2le3 11839 eirraplem 11945 bitsfzo 12123 pcprendvds 12470 pcpremul 12473 pcfaclem 12529 infpnlem2 12540 2strstr1g 12810 lmcn2 14542 dveflem 14988 tangtx 15100 ioocosf1o 15116 lgsdirprm 15301 sbthom 15697 nconstwlpolemgt0 15735 |
| Copyright terms: Public domain | W3C validator |