Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breqtrrdi | GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
Ref | Expression |
---|---|
breqtrrdi.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
breqtrrdi.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
breqtrrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrrdi.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | breqtrrdi.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2169 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | breqtrdi 4022 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 class class class wbr 3981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-br 3982 |
This theorem is referenced by: enpr2d 6779 fiunsnnn 6843 unsnfi 6880 eninl 7058 eninr 7059 difinfinf 7062 exmidfodomrlemr 7154 exmidfodomrlemrALT 7155 dju1en 7165 djucomen 7168 djuassen 7169 xpdjuen 7170 gtndiv 9282 intqfrac2 10250 uzenom 10356 xrmaxiflemval 11187 ege2le3 11608 eirraplem 11713 pcprendvds 12218 pcpremul 12221 pcfaclem 12275 infpnlem2 12286 2strstr1g 12493 lmcn2 12880 dveflem 13287 tangtx 13359 ioocosf1o 13375 lgsdirprm 13535 sbthom 13865 nconstwlpolemgt0 13902 |
Copyright terms: Public domain | W3C validator |