| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrrdi | GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| Ref | Expression |
|---|---|
| breqtrrdi.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| breqtrrdi.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| breqtrrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrrdi.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | breqtrrdi.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2211 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | breqtrdi 4100 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 class class class wbr 4059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 |
| This theorem is referenced by: enpr2d 6935 fiunsnnn 7004 exmidpw2en 7035 unsnfi 7042 eninl 7225 eninr 7226 difinfinf 7229 exmidfodomrlemr 7341 exmidfodomrlemrALT 7342 dju1en 7356 djucomen 7359 djuassen 7360 xpdjuen 7361 gtndiv 9503 intqfrac2 10501 uzenom 10607 xrmaxiflemval 11676 ege2le3 12097 eirraplem 12203 bitsfzo 12381 pcprendvds 12728 pcpremul 12731 pcfaclem 12787 infpnlem2 12798 2strstr1g 13069 lmcn2 14867 dveflem 15313 tangtx 15425 ioocosf1o 15441 lgsdirprm 15626 sbthom 16167 nconstwlpolemgt0 16205 |
| Copyright terms: Public domain | W3C validator |