| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrrdi | GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| Ref | Expression |
|---|---|
| breqtrrdi.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| breqtrrdi.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| breqtrrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrrdi.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | breqtrrdi.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2233 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | breqtrdi 4124 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 class class class wbr 4083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: enpr2d 6972 fiunsnnn 7043 exmidpw2en 7074 unsnfi 7081 eninl 7264 eninr 7265 difinfinf 7268 exmidfodomrlemr 7380 exmidfodomrlemrALT 7381 dju1en 7395 djucomen 7398 djuassen 7399 xpdjuen 7400 gtndiv 9542 intqfrac2 10541 uzenom 10647 xrmaxiflemval 11761 ege2le3 12182 eirraplem 12288 bitsfzo 12466 pcprendvds 12813 pcpremul 12816 pcfaclem 12872 infpnlem2 12883 2strstr1g 13155 lmcn2 14954 dveflem 15400 tangtx 15512 ioocosf1o 15528 lgsdirprm 15713 sbthom 16394 nconstwlpolemgt0 16432 |
| Copyright terms: Public domain | W3C validator |