Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breqtrrdi | GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
Ref | Expression |
---|---|
breqtrrdi.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
breqtrrdi.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
breqtrrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrrdi.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | breqtrrdi.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2174 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | breqtrdi 4030 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 class class class wbr 3989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 |
This theorem is referenced by: enpr2d 6795 fiunsnnn 6859 unsnfi 6896 eninl 7074 eninr 7075 difinfinf 7078 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 dju1en 7190 djucomen 7193 djuassen 7194 xpdjuen 7195 gtndiv 9307 intqfrac2 10275 uzenom 10381 xrmaxiflemval 11213 ege2le3 11634 eirraplem 11739 pcprendvds 12244 pcpremul 12247 pcfaclem 12301 infpnlem2 12312 2strstr1g 12521 lmcn2 13074 dveflem 13481 tangtx 13553 ioocosf1o 13569 lgsdirprm 13729 sbthom 14058 nconstwlpolemgt0 14095 |
Copyright terms: Public domain | W3C validator |