| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrrdi | GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| Ref | Expression |
|---|---|
| breqtrrdi.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| breqtrrdi.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| breqtrrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrrdi.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | breqtrrdi.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2209 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | breqtrdi 4085 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 class class class wbr 4044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 |
| This theorem is referenced by: enpr2d 6911 fiunsnnn 6978 exmidpw2en 7009 unsnfi 7016 eninl 7199 eninr 7200 difinfinf 7203 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 dju1en 7325 djucomen 7328 djuassen 7329 xpdjuen 7330 gtndiv 9468 intqfrac2 10464 uzenom 10570 xrmaxiflemval 11561 ege2le3 11982 eirraplem 12088 bitsfzo 12266 pcprendvds 12613 pcpremul 12616 pcfaclem 12672 infpnlem2 12683 2strstr1g 12954 lmcn2 14752 dveflem 15198 tangtx 15310 ioocosf1o 15326 lgsdirprm 15511 sbthom 15969 nconstwlpolemgt0 16007 |
| Copyright terms: Public domain | W3C validator |