![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breqtrrdi | GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
Ref | Expression |
---|---|
breqtrrdi.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
breqtrrdi.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
breqtrrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrrdi.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | breqtrrdi.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2181 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | breqtrdi 4046 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 class class class wbr 4005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 |
This theorem is referenced by: enpr2d 6819 fiunsnnn 6883 unsnfi 6920 eninl 7098 eninr 7099 difinfinf 7102 exmidfodomrlemr 7203 exmidfodomrlemrALT 7204 dju1en 7214 djucomen 7217 djuassen 7218 xpdjuen 7219 gtndiv 9350 intqfrac2 10321 uzenom 10427 xrmaxiflemval 11260 ege2le3 11681 eirraplem 11786 pcprendvds 12292 pcpremul 12295 pcfaclem 12349 infpnlem2 12360 2strstr1g 12582 lmcn2 13865 dveflem 14272 tangtx 14344 ioocosf1o 14360 lgsdirprm 14520 sbthom 14859 nconstwlpolemgt0 14897 |
Copyright terms: Public domain | W3C validator |