| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-seqfrec 10540 | 
. 2
⊢ seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | 
| 2 |   | seq3val.m | 
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 3 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (𝐹‘𝑥) = (𝐹‘𝑀)) | 
| 4 | 3 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝑥 = 𝑀 → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘𝑀) ∈ 𝑆)) | 
| 5 |   | seq3val.f | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | 
| 6 | 5 | ralrimiva 2570 | 
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) | 
| 7 |   | uzid 9615 | 
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) | 
| 8 | 2, 7 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) | 
| 9 | 4, 6, 8 | rspcdva 2873 | 
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝑆) | 
| 10 |   | ssv 3205 | 
. . . . . . 7
⊢ 𝑆 ⊆ V | 
| 11 | 10 | a1i 9 | 
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ V) | 
| 12 |   | seq3val.pl | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 13 | 5, 12 | iseqovex 10550 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆) | 
| 14 |   | seq3val.r | 
. . . . . 6
⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) | 
| 15 | 2, 9, 11, 13, 14 | frecuzrdgrclt 10507 | 
. . . . 5
⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝑀) × 𝑆)) | 
| 16 |   | ffn 5407 | 
. . . . 5
⊢ (𝑅:ω⟶((ℤ≥‘𝑀) × 𝑆) → 𝑅 Fn ω) | 
| 17 | 15, 16 | syl 14 | 
. . . 4
⊢ (𝜑 → 𝑅 Fn ω) | 
| 18 |   | 1st2nd2 6233 | 
. . . . . . . . . . . 12
⊢ (𝑢 ∈
((ℤ≥‘𝑀) × 𝑆) → 𝑢 = 〈(1st ‘𝑢), (2nd ‘𝑢)〉) | 
| 19 | 18 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → 𝑢 = 〈(1st ‘𝑢), (2nd ‘𝑢)〉) | 
| 20 | 19 | fveq2d 5562 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘〈(1st
‘𝑢), (2nd
‘𝑢)〉)) | 
| 21 |   | df-ov 5925 | 
. . . . . . . . . 10
⊢
((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘𝑢)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘〈(1st
‘𝑢), (2nd
‘𝑢)〉) | 
| 22 | 20, 21 | eqtr4di 2247 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) = ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘𝑢))) | 
| 23 |   | xp1st 6223 | 
. . . . . . . . . . 11
⊢ (𝑢 ∈
((ℤ≥‘𝑀) × 𝑆) → (1st ‘𝑢) ∈
(ℤ≥‘𝑀)) | 
| 24 | 23 | adantl 277 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → (1st ‘𝑢) ∈
(ℤ≥‘𝑀)) | 
| 25 |   | xp2nd 6224 | 
. . . . . . . . . . . 12
⊢ (𝑢 ∈
((ℤ≥‘𝑀) × 𝑆) → (2nd ‘𝑢) ∈ 𝑆) | 
| 26 | 25 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → (2nd ‘𝑢) ∈ 𝑆) | 
| 27 | 26 | elexd 2776 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → (2nd ‘𝑢) ∈ V) | 
| 28 |   | peano2uz 9657 | 
. . . . . . . . . . . 12
⊢
((1st ‘𝑢) ∈ (ℤ≥‘𝑀) → ((1st
‘𝑢) + 1) ∈
(ℤ≥‘𝑀)) | 
| 29 | 24, 28 | syl 14 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘𝑢) + 1) ∈
(ℤ≥‘𝑀)) | 
| 30 | 12 | caovclg 6076 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 + 𝑏) ∈ 𝑆) | 
| 31 | 30 | adantlr 477 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 + 𝑏) ∈ 𝑆) | 
| 32 |   | fveq2 5558 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = ((1st ‘𝑢) + 1) → (𝐹‘𝑥) = (𝐹‘((1st ‘𝑢) + 1))) | 
| 33 | 32 | eleq1d 2265 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = ((1st ‘𝑢) + 1) → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘((1st ‘𝑢) + 1)) ∈ 𝑆)) | 
| 34 | 6 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) | 
| 35 | 33, 34, 29 | rspcdva 2873 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → (𝐹‘((1st ‘𝑢) + 1)) ∈ 𝑆) | 
| 36 | 31, 26, 35 | caovcld 6077 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((2nd ‘𝑢) + (𝐹‘((1st ‘𝑢) + 1))) ∈ 𝑆) | 
| 37 |   | opelxpi 4695 | 
. . . . . . . . . . 11
⊢
((((1st ‘𝑢) + 1) ∈
(ℤ≥‘𝑀) ∧ ((2nd ‘𝑢) + (𝐹‘((1st ‘𝑢) + 1))) ∈ 𝑆) → 〈((1st
‘𝑢) + 1),
((2nd ‘𝑢)
+ (𝐹‘((1st
‘𝑢) + 1)))〉
∈ ((ℤ≥‘𝑀) × 𝑆)) | 
| 38 | 29, 36, 37 | syl2anc 411 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → 〈((1st
‘𝑢) + 1),
((2nd ‘𝑢)
+ (𝐹‘((1st
‘𝑢) + 1)))〉
∈ ((ℤ≥‘𝑀) × 𝑆)) | 
| 39 |   | oveq1 5929 | 
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑢) → (𝑥 + 1) = ((1st ‘𝑢) + 1)) | 
| 40 |   | fvoveq1 5945 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘𝑢) → (𝐹‘(𝑥 + 1)) = (𝐹‘((1st ‘𝑢) + 1))) | 
| 41 | 40 | oveq2d 5938 | 
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑢) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘((1st ‘𝑢) + 1)))) | 
| 42 | 39, 41 | opeq12d 3816 | 
. . . . . . . . . . 11
⊢ (𝑥 = (1st ‘𝑢) → 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉 = 〈((1st
‘𝑢) + 1), (𝑦 + (𝐹‘((1st ‘𝑢) + 1)))〉) | 
| 43 |   | oveq1 5929 | 
. . . . . . . . . . . 12
⊢ (𝑦 = (2nd ‘𝑢) → (𝑦 + (𝐹‘((1st ‘𝑢) + 1))) = ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) +
1)))) | 
| 44 | 43 | opeq2d 3815 | 
. . . . . . . . . . 11
⊢ (𝑦 = (2nd ‘𝑢) → 〈((1st
‘𝑢) + 1), (𝑦 + (𝐹‘((1st ‘𝑢) + 1)))〉 =
〈((1st ‘𝑢) + 1), ((2nd ‘𝑢) + (𝐹‘((1st ‘𝑢) + 1)))〉) | 
| 45 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢ (𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) | 
| 46 | 42, 44, 45 | ovmpog 6057 | 
. . . . . . . . . 10
⊢
(((1st ‘𝑢) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘𝑢) ∈ V ∧
〈((1st ‘𝑢) + 1), ((2nd ‘𝑢) + (𝐹‘((1st ‘𝑢) + 1)))〉 ∈
((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘𝑢)) = 〈((1st
‘𝑢) + 1),
((2nd ‘𝑢)
+ (𝐹‘((1st
‘𝑢) +
1)))〉) | 
| 47 | 24, 27, 38, 46 | syl3anc 1249 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘𝑢)) = 〈((1st
‘𝑢) + 1),
((2nd ‘𝑢)
+ (𝐹‘((1st
‘𝑢) +
1)))〉) | 
| 48 | 22, 47 | eqtrd 2229 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) = 〈((1st ‘𝑢) + 1), ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) +
1)))〉) | 
| 49 | 48, 38 | eqeltrd 2273 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆)) | 
| 50 | 49 | ralrimiva 2570 | 
. . . . . 6
⊢ (𝜑 → ∀𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆)) | 
| 51 |   | opelxpi 4695 | 
. . . . . . 7
⊢ ((𝑀 ∈
(ℤ≥‘𝑀) ∧ (𝐹‘𝑀) ∈ 𝑆) → 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆)) | 
| 52 | 8, 9, 51 | syl2anc 411 | 
. . . . . 6
⊢ (𝜑 → 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆)) | 
| 53 | 50, 52 | jca 306 | 
. . . . 5
⊢ (𝜑 → (∀𝑢 ∈
((ℤ≥‘𝑀) × 𝑆)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆) ∧ 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆))) | 
| 54 |   | frecfcl 6463 | 
. . . . 5
⊢
((∀𝑢 ∈
((ℤ≥‘𝑀) × 𝑆)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆) ∧ 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆)) → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉):ω⟶((ℤ≥‘𝑀) × 𝑆)) | 
| 55 |   | ffn 5407 | 
. . . . 5
⊢
(frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉):ω⟶((ℤ≥‘𝑀) × 𝑆) → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦
∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) Fn ω) | 
| 56 | 53, 54, 55 | 3syl 17 | 
. . . 4
⊢ (𝜑 → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) Fn ω) | 
| 57 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑐 = ∅ → (𝑅‘𝑐) = (𝑅‘∅)) | 
| 58 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑐 = ∅ → (frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅)) | 
| 59 | 57, 58 | eqeq12d 2211 | 
. . . . . . 7
⊢ (𝑐 = ∅ → ((𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) ↔ (𝑅‘∅) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅))) | 
| 60 | 59 | imbi2d 230 | 
. . . . . 6
⊢ (𝑐 = ∅ → ((𝜑 → (𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐)) ↔ (𝜑 → (𝑅‘∅) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅)))) | 
| 61 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑐 = 𝑘 → (𝑅‘𝑐) = (𝑅‘𝑘)) | 
| 62 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑐 = 𝑘 → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) | 
| 63 | 61, 62 | eqeq12d 2211 | 
. . . . . . 7
⊢ (𝑐 = 𝑘 → ((𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) ↔ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) | 
| 64 | 63 | imbi2d 230 | 
. . . . . 6
⊢ (𝑐 = 𝑘 → ((𝜑 → (𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐)) ↔ (𝜑 → (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)))) | 
| 65 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑐 = suc 𝑘 → (𝑅‘𝑐) = (𝑅‘suc 𝑘)) | 
| 66 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑐 = suc 𝑘 → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘)) | 
| 67 | 65, 66 | eqeq12d 2211 | 
. . . . . . 7
⊢ (𝑐 = suc 𝑘 → ((𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) ↔ (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘))) | 
| 68 | 67 | imbi2d 230 | 
. . . . . 6
⊢ (𝑐 = suc 𝑘 → ((𝜑 → (𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐)) ↔ (𝜑 → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘)))) | 
| 69 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑐 = 𝑛 → (𝑅‘𝑐) = (𝑅‘𝑛)) | 
| 70 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑐 = 𝑛 → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑛)) | 
| 71 | 69, 70 | eqeq12d 2211 | 
. . . . . . 7
⊢ (𝑐 = 𝑛 → ((𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) ↔ (𝑅‘𝑛) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑛))) | 
| 72 | 71 | imbi2d 230 | 
. . . . . 6
⊢ (𝑐 = 𝑛 → ((𝜑 → (𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐)) ↔ (𝜑 → (𝑅‘𝑛) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑛)))) | 
| 73 | 14 | fveq1i 5559 | 
. . . . . . . 8
⊢ (𝑅‘∅) = (frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅) | 
| 74 |   | frec0g 6455 | 
. . . . . . . . 9
⊢
(〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆) → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅) = 〈𝑀, (𝐹‘𝑀)〉) | 
| 75 | 52, 74 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅) = 〈𝑀, (𝐹‘𝑀)〉) | 
| 76 | 73, 75 | eqtrid 2241 | 
. . . . . . 7
⊢ (𝜑 → (𝑅‘∅) = 〈𝑀, (𝐹‘𝑀)〉) | 
| 77 |   | frec0g 6455 | 
. . . . . . . 8
⊢
(〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆) → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅) = 〈𝑀, (𝐹‘𝑀)〉) | 
| 78 | 52, 77 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅) = 〈𝑀, (𝐹‘𝑀)〉) | 
| 79 | 76, 78 | eqtr4d 2232 | 
. . . . . 6
⊢ (𝜑 → (𝑅‘∅) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅)) | 
| 80 | 15 | ad2antlr 489 | 
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 𝑅:ω⟶((ℤ≥‘𝑀) × 𝑆)) | 
| 81 |   | simpll 527 | 
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 𝑘 ∈ ω) | 
| 82 | 80, 81 | ffvelcdmd 5698 | 
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘𝑘) ∈ ((ℤ≥‘𝑀) × 𝑆)) | 
| 83 |   | xp1st 6223 | 
. . . . . . . . . . 11
⊢ ((𝑅‘𝑘) ∈ ((ℤ≥‘𝑀) × 𝑆) → (1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀)) | 
| 84 | 82, 83 | syl 14 | 
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀)) | 
| 85 |   | xp2nd 6224 | 
. . . . . . . . . . . 12
⊢ ((𝑅‘𝑘) ∈ ((ℤ≥‘𝑀) × 𝑆) → (2nd ‘(𝑅‘𝑘)) ∈ 𝑆) | 
| 86 | 82, 85 | syl 14 | 
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (2nd ‘(𝑅‘𝑘)) ∈ 𝑆) | 
| 87 | 86 | elexd 2776 | 
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (2nd ‘(𝑅‘𝑘)) ∈ V) | 
| 88 | 30 | adantll 476 | 
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 + 𝑏) ∈ 𝑆) | 
| 89 | 88 | adantlr 477 | 
. . . . . . . . . . . . . 14
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 + 𝑏) ∈ 𝑆) | 
| 90 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = ((1st
‘(𝑅‘𝑘)) + 1) → (𝐹‘𝑎) = (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) | 
| 91 | 90 | eleq1d 2265 | 
. . . . . . . . . . . . . . 15
⊢ (𝑎 = ((1st
‘(𝑅‘𝑘)) + 1) → ((𝐹‘𝑎) ∈ 𝑆 ↔ (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)) ∈ 𝑆)) | 
| 92 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) | 
| 93 | 92 | eleq1d 2265 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘𝑎) ∈ 𝑆)) | 
| 94 | 93 | cbvralv 2729 | 
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
(ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐹‘𝑎) ∈ 𝑆) | 
| 95 | 6, 94 | sylib 122 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐹‘𝑎) ∈ 𝑆) | 
| 96 | 95 | ad2antlr 489 | 
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐹‘𝑎) ∈ 𝑆) | 
| 97 |   | peano2uz 9657 | 
. . . . . . . . . . . . . . . 16
⊢
((1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀) → ((1st
‘(𝑅‘𝑘)) + 1) ∈
(ℤ≥‘𝑀)) | 
| 98 | 84, 97 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((1st ‘(𝑅‘𝑘)) + 1) ∈
(ℤ≥‘𝑀)) | 
| 99 | 91, 96, 98 | rspcdva 2873 | 
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)) ∈ 𝑆) | 
| 100 | 89, 86, 99 | caovcld 6077 | 
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) ∈ 𝑆) | 
| 101 |   | fvoveq1 5945 | 
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (1st ‘(𝑅‘𝑘)) → (𝐹‘(𝑧 + 1)) = (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) | 
| 102 | 101 | oveq2d 5938 | 
. . . . . . . . . . . . . 14
⊢ (𝑧 = (1st ‘(𝑅‘𝑘)) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) | 
| 103 |   | oveq1 5929 | 
. . . . . . . . . . . . . 14
⊢ (𝑤 = (2nd ‘(𝑅‘𝑘)) → (𝑤 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) = ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) | 
| 104 |   | eqid 2196 | 
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) | 
| 105 | 102, 103,
104 | ovmpog 6057 | 
. . . . . . . . . . . . 13
⊢
(((1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘(𝑅‘𝑘)) ∈ 𝑆 ∧ ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) ∈ 𝑆) → ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘))) = ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) | 
| 106 | 84, 86, 100, 105 | syl3anc 1249 | 
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘))) = ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) | 
| 107 | 106 | opeq2d 3815 | 
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 〈((1st
‘(𝑅‘𝑘)) + 1), ((1st
‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉 = 〈((1st
‘(𝑅‘𝑘)) + 1), ((2nd
‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) | 
| 108 | 106, 100 | eqeltrd 2273 | 
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘))) ∈ 𝑆) | 
| 109 |   | opelxpi 4695 | 
. . . . . . . . . . . 12
⊢
((((1st ‘(𝑅‘𝑘)) + 1) ∈
(ℤ≥‘𝑀) ∧ ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘))) ∈ 𝑆) → 〈((1st
‘(𝑅‘𝑘)) + 1), ((1st
‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉 ∈
((ℤ≥‘𝑀) × 𝑆)) | 
| 110 | 98, 108, 109 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 〈((1st
‘(𝑅‘𝑘)) + 1), ((1st
‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉 ∈
((ℤ≥‘𝑀) × 𝑆)) | 
| 111 | 107, 110 | eqeltrrd 2274 | 
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 〈((1st
‘(𝑅‘𝑘)) + 1), ((2nd
‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉 ∈
((ℤ≥‘𝑀) × 𝑆)) | 
| 112 |   | oveq1 5929 | 
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → (𝑥 + 1) = ((1st ‘(𝑅‘𝑘)) + 1)) | 
| 113 |   | fvoveq1 5945 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → (𝐹‘(𝑥 + 1)) = (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) | 
| 114 | 113 | oveq2d 5938 | 
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) | 
| 115 | 112, 114 | opeq12d 3816 | 
. . . . . . . . . . 11
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉 = 〈((1st
‘(𝑅‘𝑘)) + 1), (𝑦 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) | 
| 116 |   | oveq1 5929 | 
. . . . . . . . . . . 12
⊢ (𝑦 = (2nd ‘(𝑅‘𝑘)) → (𝑦 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) = ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) | 
| 117 | 116 | opeq2d 3815 | 
. . . . . . . . . . 11
⊢ (𝑦 = (2nd ‘(𝑅‘𝑘)) → 〈((1st
‘(𝑅‘𝑘)) + 1), (𝑦 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉 = 〈((1st
‘(𝑅‘𝑘)) + 1), ((2nd
‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) | 
| 118 | 115, 117,
45 | ovmpog 6057 | 
. . . . . . . . . 10
⊢
(((1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘(𝑅‘𝑘)) ∈ V ∧
〈((1st ‘(𝑅‘𝑘)) + 1), ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉 ∈
((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘(𝑅‘𝑘))) = 〈((1st ‘(𝑅‘𝑘)) + 1), ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) | 
| 119 | 84, 87, 111, 118 | syl3anc 1249 | 
. . . . . . . . 9
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘(𝑅‘𝑘))) = 〈((1st ‘(𝑅‘𝑘)) + 1), ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) | 
| 120 | 50 | ad2antlr 489 | 
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ∀𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆)) | 
| 121 | 52 | ad2antlr 489 | 
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆)) | 
| 122 |   | frecsuc 6465 | 
. . . . . . . . . . . 12
⊢
((∀𝑢 ∈
((ℤ≥‘𝑀) × 𝑆)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆) ∧ 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆) ∧ 𝑘 ∈ ω) → (frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) | 
| 123 | 120, 121,
81, 122 | syl3anc 1249 | 
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) | 
| 124 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) | 
| 125 | 124 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(𝑅‘𝑘)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) | 
| 126 | 123, 125 | eqtr4d 2232 | 
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(𝑅‘𝑘))) | 
| 127 |   | 1st2nd2 6233 | 
. . . . . . . . . . . . 13
⊢ ((𝑅‘𝑘) ∈ ((ℤ≥‘𝑀) × 𝑆) → (𝑅‘𝑘) = 〈(1st ‘(𝑅‘𝑘)), (2nd ‘(𝑅‘𝑘))〉) | 
| 128 | 82, 127 | syl 14 | 
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘𝑘) = 〈(1st ‘(𝑅‘𝑘)), (2nd ‘(𝑅‘𝑘))〉) | 
| 129 | 128 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(𝑅‘𝑘)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘〈(1st
‘(𝑅‘𝑘)), (2nd
‘(𝑅‘𝑘))〉)) | 
| 130 |   | df-ov 5925 | 
. . . . . . . . . . 11
⊢
((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘(𝑅‘𝑘))) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘〈(1st
‘(𝑅‘𝑘)), (2nd
‘(𝑅‘𝑘))〉) | 
| 131 | 129, 130 | eqtr4di 2247 | 
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(𝑅‘𝑘)) = ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘(𝑅‘𝑘)))) | 
| 132 | 126, 131 | eqtrd 2229 | 
. . . . . . . . 9
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) = ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘(𝑅‘𝑘)))) | 
| 133 | 14 | fveq1i 5559 | 
. . . . . . . . . . . . . . 15
⊢ (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) | 
| 134 | 19 | fveq2d 5562 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘〈(1st
‘𝑢), (2nd
‘𝑢)〉)) | 
| 135 |   | df-ov 5925 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘𝑢)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘〈(1st
‘𝑢), (2nd
‘𝑢)〉) | 
| 136 | 134, 135 | eqtr4di 2247 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) = ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘𝑢))) | 
| 137 |   | fvoveq1 5945 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = (1st ‘𝑢) → (𝐹‘(𝑧 + 1)) = (𝐹‘((1st ‘𝑢) + 1))) | 
| 138 | 137 | oveq2d 5938 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 = (1st ‘𝑢) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘((1st ‘𝑢) + 1)))) | 
| 139 |   | oveq1 5929 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = (2nd ‘𝑢) → (𝑤 + (𝐹‘((1st ‘𝑢) + 1))) = ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) +
1)))) | 
| 140 | 138, 139,
104 | ovmpog 6057 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((1st ‘𝑢) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘𝑢) ∈ 𝑆 ∧ ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) + 1))) ∈
𝑆) → ((1st
‘𝑢)(𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢)) = ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) +
1)))) | 
| 141 | 24, 26, 36, 140 | syl3anc 1249 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢)) = ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) +
1)))) | 
| 142 | 141, 36 | eqeltrd 2273 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢)) ∈ 𝑆) | 
| 143 |   | opelxpi 4695 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((1st ‘𝑢) + 1) ∈
(ℤ≥‘𝑀) ∧ ((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢)) ∈ 𝑆) → 〈((1st ‘𝑢) + 1), ((1st
‘𝑢)(𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉 ∈
((ℤ≥‘𝑀) × 𝑆)) | 
| 144 | 29, 142, 143 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → 〈((1st
‘𝑢) + 1),
((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉 ∈
((ℤ≥‘𝑀) × 𝑆)) | 
| 145 |   | oveq1 5929 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = (1st ‘𝑢) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)) | 
| 146 | 39, 145 | opeq12d 3816 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = (1st ‘𝑢) → 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉 = 〈((1st ‘𝑢) + 1), ((1st
‘𝑢)(𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) | 
| 147 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = (2nd ‘𝑢) → ((1st
‘𝑢)(𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))) | 
| 148 | 147 | opeq2d 3815 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = (2nd ‘𝑢) → 〈((1st
‘𝑢) + 1),
((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉 = 〈((1st ‘𝑢) + 1), ((1st
‘𝑢)(𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉) | 
| 149 |   | eqid 2196 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) | 
| 150 | 146, 148,
149 | ovmpog 6057 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((1st ‘𝑢) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘𝑢) ∈ V ∧
〈((1st ‘𝑢) + 1), ((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉 ∈
((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘𝑢)) = 〈((1st
‘𝑢) + 1),
((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉) | 
| 151 | 24, 27, 144, 150 | syl3anc 1249 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘𝑢)) = 〈((1st
‘𝑢) + 1),
((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉) | 
| 152 | 136, 151 | eqtrd 2229 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) = 〈((1st ‘𝑢) + 1), ((1st
‘𝑢)(𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉) | 
| 153 | 152, 144 | eqeltrd 2273 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆)) | 
| 154 | 153 | ralrimiva 2570 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆)) | 
| 155 | 154 | ad2antlr 489 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ∀𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆)) | 
| 156 |   | frecsuc 6465 | 
. . . . . . . . . . . . . . . 16
⊢
((∀𝑢 ∈
((ℤ≥‘𝑀) × 𝑆)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆) ∧ 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆) ∧ 𝑘 ∈ ω) → (frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) | 
| 157 | 155, 121,
81, 156 | syl3anc 1249 | 
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) | 
| 158 | 133, 157 | eqtrid 2241 | 
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) | 
| 159 | 14 | fveq1i 5559 | 
. . . . . . . . . . . . . . 15
⊢ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘) | 
| 160 | 159 | fveq2i 5561 | 
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(𝑅‘𝑘)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) | 
| 161 | 158, 160 | eqtr4di 2247 | 
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(𝑅‘𝑘))) | 
| 162 | 128 | fveq2d 5562 | 
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(𝑅‘𝑘)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘〈(1st
‘(𝑅‘𝑘)), (2nd
‘(𝑅‘𝑘))〉)) | 
| 163 | 161, 162 | eqtrd 2229 | 
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘〈(1st
‘(𝑅‘𝑘)), (2nd
‘(𝑅‘𝑘))〉)) | 
| 164 |   | df-ov 5925 | 
. . . . . . . . . . . 12
⊢
((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘(𝑅‘𝑘))) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘〈(1st
‘(𝑅‘𝑘)), (2nd
‘(𝑅‘𝑘))〉) | 
| 165 | 163, 164 | eqtr4di 2247 | 
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘(𝑅‘𝑘)))) | 
| 166 |   | oveq1 5929 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)) | 
| 167 | 112, 166 | opeq12d 3816 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉 = 〈((1st
‘(𝑅‘𝑘)) + 1), ((1st
‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) | 
| 168 |   | oveq2 5930 | 
. . . . . . . . . . . . . 14
⊢ (𝑦 = (2nd ‘(𝑅‘𝑘)) → ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))) | 
| 169 | 168 | opeq2d 3815 | 
. . . . . . . . . . . . 13
⊢ (𝑦 = (2nd ‘(𝑅‘𝑘)) → 〈((1st
‘(𝑅‘𝑘)) + 1), ((1st
‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉 = 〈((1st
‘(𝑅‘𝑘)) + 1), ((1st
‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉) | 
| 170 | 167, 169,
149 | ovmpog 6057 | 
. . . . . . . . . . . 12
⊢
(((1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘(𝑅‘𝑘)) ∈ V ∧
〈((1st ‘(𝑅‘𝑘)) + 1), ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉 ∈
((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘(𝑅‘𝑘))) = 〈((1st ‘(𝑅‘𝑘)) + 1), ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉) | 
| 171 | 84, 87, 110, 170 | syl3anc 1249 | 
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘(𝑅‘𝑘))) = 〈((1st ‘(𝑅‘𝑘)) + 1), ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉) | 
| 172 | 165, 171 | eqtrd 2229 | 
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = 〈((1st ‘(𝑅‘𝑘)) + 1), ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉) | 
| 173 | 172, 107 | eqtrd 2229 | 
. . . . . . . . 9
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = 〈((1st ‘(𝑅‘𝑘)) + 1), ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) | 
| 174 | 119, 132,
173 | 3eqtr4rd 2240 | 
. . . . . . . 8
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘)) | 
| 175 | 174 | exp31 364 | 
. . . . . . 7
⊢ (𝑘 ∈ ω → (𝜑 → ((𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘) → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘)))) | 
| 176 | 175 | a2d 26 | 
. . . . . 6
⊢ (𝑘 ∈ ω → ((𝜑 → (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝜑 → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘)))) | 
| 177 | 60, 64, 68, 72, 79, 176 | finds 4636 | 
. . . . 5
⊢ (𝑛 ∈ ω → (𝜑 → (𝑅‘𝑛) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑛))) | 
| 178 | 177 | impcom 125 | 
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝑅‘𝑛) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑛)) | 
| 179 | 17, 56, 178 | eqfnfvd 5662 | 
. . 3
⊢ (𝜑 → 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)) | 
| 180 | 179 | rneqd 4895 | 
. 2
⊢ (𝜑 → ran 𝑅 = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)) | 
| 181 | 1, 180 | eqtr4id 2248 | 
1
⊢ (𝜑 → seq𝑀( + , 𝐹) = ran 𝑅) |