ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3val GIF version

Theorem seq3val 10552
Description: Value of the sequence builder function. This helps expand the definition although there should be little need for it once we have proved seqf 10556, seq3-1 10554 and seq3p1 10557, as further development can be done in terms of those. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 4-Nov-2022.)
Hypotheses
Ref Expression
seq3val.m (𝜑𝑀 ∈ ℤ)
seq3val.r 𝑅 = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
seq3val.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seq3val.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seq3val (𝜑 → seq𝑀( + , 𝐹) = ran 𝑅)
Distinct variable groups:   𝑥, + ,𝑦,𝑤,𝑧   𝑥,𝐹,𝑦,𝑤,𝑧   𝑥,𝑀,𝑦,𝑤,𝑧   𝑥,𝑅,𝑦,𝑤,𝑧   𝑥,𝑆,𝑦,𝑤,𝑧   𝜑,𝑥,𝑦,𝑤,𝑧

Proof of Theorem seq3val
Dummy variables 𝑎 𝑏 𝑘 𝑐 𝑛 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqfrec 10540 . 2 seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
2 seq3val.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
3 fveq2 5558 . . . . . . . 8 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
43eleq1d 2265 . . . . . . 7 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑀) ∈ 𝑆))
5 seq3val.f . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
65ralrimiva 2570 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
7 uzid 9615 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
82, 7syl 14 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑀))
94, 6, 8rspcdva 2873 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ 𝑆)
10 ssv 3205 . . . . . . 7 𝑆 ⊆ V
1110a1i 9 . . . . . 6 (𝜑𝑆 ⊆ V)
12 seq3val.pl . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
135, 12iseqovex 10550 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆)
14 seq3val.r . . . . . 6 𝑅 = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
152, 9, 11, 13, 14frecuzrdgrclt 10507 . . . . 5 (𝜑𝑅:ω⟶((ℤ𝑀) × 𝑆))
16 ffn 5407 . . . . 5 (𝑅:ω⟶((ℤ𝑀) × 𝑆) → 𝑅 Fn ω)
1715, 16syl 14 . . . 4 (𝜑𝑅 Fn ω)
18 1st2nd2 6233 . . . . . . . . . . . 12 (𝑢 ∈ ((ℤ𝑀) × 𝑆) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
1918adantl 277 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
2019fveq2d 5562 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘⟨(1st𝑢), (2nd𝑢)⟩))
21 df-ov 5925 . . . . . . . . . 10 ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd𝑢)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘⟨(1st𝑢), (2nd𝑢)⟩)
2220, 21eqtr4di 2247 . . . . . . . . 9 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) = ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd𝑢)))
23 xp1st 6223 . . . . . . . . . . 11 (𝑢 ∈ ((ℤ𝑀) × 𝑆) → (1st𝑢) ∈ (ℤ𝑀))
2423adantl 277 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → (1st𝑢) ∈ (ℤ𝑀))
25 xp2nd 6224 . . . . . . . . . . . 12 (𝑢 ∈ ((ℤ𝑀) × 𝑆) → (2nd𝑢) ∈ 𝑆)
2625adantl 277 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → (2nd𝑢) ∈ 𝑆)
2726elexd 2776 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → (2nd𝑢) ∈ V)
28 peano2uz 9657 . . . . . . . . . . . 12 ((1st𝑢) ∈ (ℤ𝑀) → ((1st𝑢) + 1) ∈ (ℤ𝑀))
2924, 28syl 14 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → ((1st𝑢) + 1) ∈ (ℤ𝑀))
3012caovclg 6076 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
3130adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
32 fveq2 5558 . . . . . . . . . . . . . 14 (𝑥 = ((1st𝑢) + 1) → (𝐹𝑥) = (𝐹‘((1st𝑢) + 1)))
3332eleq1d 2265 . . . . . . . . . . . . 13 (𝑥 = ((1st𝑢) + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘((1st𝑢) + 1)) ∈ 𝑆))
346adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
3533, 34, 29rspcdva 2873 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → (𝐹‘((1st𝑢) + 1)) ∈ 𝑆)
3631, 26, 35caovcld 6077 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))) ∈ 𝑆)
37 opelxpi 4695 . . . . . . . . . . 11 ((((1st𝑢) + 1) ∈ (ℤ𝑀) ∧ ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))) ∈ 𝑆) → ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩ ∈ ((ℤ𝑀) × 𝑆))
3829, 36, 37syl2anc 411 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩ ∈ ((ℤ𝑀) × 𝑆))
39 oveq1 5929 . . . . . . . . . . . 12 (𝑥 = (1st𝑢) → (𝑥 + 1) = ((1st𝑢) + 1))
40 fvoveq1 5945 . . . . . . . . . . . . 13 (𝑥 = (1st𝑢) → (𝐹‘(𝑥 + 1)) = (𝐹‘((1st𝑢) + 1)))
4140oveq2d 5938 . . . . . . . . . . . 12 (𝑥 = (1st𝑢) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘((1st𝑢) + 1))))
4239, 41opeq12d 3816 . . . . . . . . . . 11 (𝑥 = (1st𝑢) → ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩ = ⟨((1st𝑢) + 1), (𝑦 + (𝐹‘((1st𝑢) + 1)))⟩)
43 oveq1 5929 . . . . . . . . . . . 12 (𝑦 = (2nd𝑢) → (𝑦 + (𝐹‘((1st𝑢) + 1))) = ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))))
4443opeq2d 3815 . . . . . . . . . . 11 (𝑦 = (2nd𝑢) → ⟨((1st𝑢) + 1), (𝑦 + (𝐹‘((1st𝑢) + 1)))⟩ = ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩)
45 eqid 2196 . . . . . . . . . . 11 (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)
4642, 44, 45ovmpog 6057 . . . . . . . . . 10 (((1st𝑢) ∈ (ℤ𝑀) ∧ (2nd𝑢) ∈ V ∧ ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩ ∈ ((ℤ𝑀) × 𝑆)) → ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd𝑢)) = ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩)
4724, 27, 38, 46syl3anc 1249 . . . . . . . . 9 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd𝑢)) = ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩)
4822, 47eqtrd 2229 . . . . . . . 8 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) = ⟨((1st𝑢) + 1), ((2nd𝑢) + (𝐹‘((1st𝑢) + 1)))⟩)
4948, 38eqeltrd 2273 . . . . . . 7 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝑆))
5049ralrimiva 2570 . . . . . 6 (𝜑 → ∀𝑢 ∈ ((ℤ𝑀) × 𝑆)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝑆))
51 opelxpi 4695 . . . . . . 7 ((𝑀 ∈ (ℤ𝑀) ∧ (𝐹𝑀) ∈ 𝑆) → ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝑆))
528, 9, 51syl2anc 411 . . . . . 6 (𝜑 → ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝑆))
5350, 52jca 306 . . . . 5 (𝜑 → (∀𝑢 ∈ ((ℤ𝑀) × 𝑆)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝑆) ∧ ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝑆)))
54 frecfcl 6463 . . . . 5 ((∀𝑢 ∈ ((ℤ𝑀) × 𝑆)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝑆) ∧ ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝑆)) → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩):ω⟶((ℤ𝑀) × 𝑆))
55 ffn 5407 . . . . 5 (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩):ω⟶((ℤ𝑀) × 𝑆) → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) Fn ω)
5653, 54, 553syl 17 . . . 4 (𝜑 → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) Fn ω)
57 fveq2 5558 . . . . . . . 8 (𝑐 = ∅ → (𝑅𝑐) = (𝑅‘∅))
58 fveq2 5558 . . . . . . . 8 (𝑐 = ∅ → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅))
5957, 58eqeq12d 2211 . . . . . . 7 (𝑐 = ∅ → ((𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) ↔ (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅)))
6059imbi2d 230 . . . . . 6 (𝑐 = ∅ → ((𝜑 → (𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐)) ↔ (𝜑 → (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅))))
61 fveq2 5558 . . . . . . . 8 (𝑐 = 𝑘 → (𝑅𝑐) = (𝑅𝑘))
62 fveq2 5558 . . . . . . . 8 (𝑐 = 𝑘 → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘))
6361, 62eqeq12d 2211 . . . . . . 7 (𝑐 = 𝑘 → ((𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) ↔ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
6463imbi2d 230 . . . . . 6 (𝑐 = 𝑘 → ((𝜑 → (𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐)) ↔ (𝜑 → (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘))))
65 fveq2 5558 . . . . . . . 8 (𝑐 = suc 𝑘 → (𝑅𝑐) = (𝑅‘suc 𝑘))
66 fveq2 5558 . . . . . . . 8 (𝑐 = suc 𝑘 → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘))
6765, 66eqeq12d 2211 . . . . . . 7 (𝑐 = suc 𝑘 → ((𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) ↔ (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘)))
6867imbi2d 230 . . . . . 6 (𝑐 = suc 𝑘 → ((𝜑 → (𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐)) ↔ (𝜑 → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘))))
69 fveq2 5558 . . . . . . . 8 (𝑐 = 𝑛 → (𝑅𝑐) = (𝑅𝑛))
70 fveq2 5558 . . . . . . . 8 (𝑐 = 𝑛 → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑛))
7169, 70eqeq12d 2211 . . . . . . 7 (𝑐 = 𝑛 → ((𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐) ↔ (𝑅𝑛) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑛)))
7271imbi2d 230 . . . . . 6 (𝑐 = 𝑛 → ((𝜑 → (𝑅𝑐) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑐)) ↔ (𝜑 → (𝑅𝑛) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑛))))
7314fveq1i 5559 . . . . . . . 8 (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅)
74 frec0g 6455 . . . . . . . . 9 (⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝑆) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅) = ⟨𝑀, (𝐹𝑀)⟩)
7552, 74syl 14 . . . . . . . 8 (𝜑 → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅) = ⟨𝑀, (𝐹𝑀)⟩)
7673, 75eqtrid 2241 . . . . . . 7 (𝜑 → (𝑅‘∅) = ⟨𝑀, (𝐹𝑀)⟩)
77 frec0g 6455 . . . . . . . 8 (⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝑆) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅) = ⟨𝑀, (𝐹𝑀)⟩)
7852, 77syl 14 . . . . . . 7 (𝜑 → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅) = ⟨𝑀, (𝐹𝑀)⟩)
7976, 78eqtr4d 2232 . . . . . 6 (𝜑 → (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘∅))
8015ad2antlr 489 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → 𝑅:ω⟶((ℤ𝑀) × 𝑆))
81 simpll 527 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → 𝑘 ∈ ω)
8280, 81ffvelcdmd 5698 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅𝑘) ∈ ((ℤ𝑀) × 𝑆))
83 xp1st 6223 . . . . . . . . . . 11 ((𝑅𝑘) ∈ ((ℤ𝑀) × 𝑆) → (1st ‘(𝑅𝑘)) ∈ (ℤ𝑀))
8482, 83syl 14 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (1st ‘(𝑅𝑘)) ∈ (ℤ𝑀))
85 xp2nd 6224 . . . . . . . . . . . 12 ((𝑅𝑘) ∈ ((ℤ𝑀) × 𝑆) → (2nd ‘(𝑅𝑘)) ∈ 𝑆)
8682, 85syl 14 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (2nd ‘(𝑅𝑘)) ∈ 𝑆)
8786elexd 2776 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (2nd ‘(𝑅𝑘)) ∈ V)
8830adantll 476 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
8988adantlr 477 . . . . . . . . . . . . . 14 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
90 fveq2 5558 . . . . . . . . . . . . . . . 16 (𝑎 = ((1st ‘(𝑅𝑘)) + 1) → (𝐹𝑎) = (𝐹‘((1st ‘(𝑅𝑘)) + 1)))
9190eleq1d 2265 . . . . . . . . . . . . . . 15 (𝑎 = ((1st ‘(𝑅𝑘)) + 1) → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹‘((1st ‘(𝑅𝑘)) + 1)) ∈ 𝑆))
92 fveq2 5558 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
9392eleq1d 2265 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑎) ∈ 𝑆))
9493cbvralv 2729 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ𝑀)(𝐹𝑎) ∈ 𝑆)
956, 94sylib 122 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑎 ∈ (ℤ𝑀)(𝐹𝑎) ∈ 𝑆)
9695ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ∀𝑎 ∈ (ℤ𝑀)(𝐹𝑎) ∈ 𝑆)
97 peano2uz 9657 . . . . . . . . . . . . . . . 16 ((1st ‘(𝑅𝑘)) ∈ (ℤ𝑀) → ((1st ‘(𝑅𝑘)) + 1) ∈ (ℤ𝑀))
9884, 97syl 14 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((1st ‘(𝑅𝑘)) + 1) ∈ (ℤ𝑀))
9991, 96, 98rspcdva 2873 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝐹‘((1st ‘(𝑅𝑘)) + 1)) ∈ 𝑆)
10089, 86, 99caovcld 6077 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) ∈ 𝑆)
101 fvoveq1 5945 . . . . . . . . . . . . . . 15 (𝑧 = (1st ‘(𝑅𝑘)) → (𝐹‘(𝑧 + 1)) = (𝐹‘((1st ‘(𝑅𝑘)) + 1)))
102101oveq2d 5938 . . . . . . . . . . . . . 14 (𝑧 = (1st ‘(𝑅𝑘)) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
103 oveq1 5929 . . . . . . . . . . . . . 14 (𝑤 = (2nd ‘(𝑅𝑘)) → (𝑤 + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) = ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
104 eqid 2196 . . . . . . . . . . . . . 14 (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
105102, 103, 104ovmpog 6057 . . . . . . . . . . . . 13 (((1st ‘(𝑅𝑘)) ∈ (ℤ𝑀) ∧ (2nd ‘(𝑅𝑘)) ∈ 𝑆 ∧ ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) ∈ 𝑆) → ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘))) = ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
10684, 86, 100, 105syl3anc 1249 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘))) = ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
107106opeq2d 3815 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩ = ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
108106, 100eqeltrd 2273 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘))) ∈ 𝑆)
109 opelxpi 4695 . . . . . . . . . . . 12 ((((1st ‘(𝑅𝑘)) + 1) ∈ (ℤ𝑀) ∧ ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘))) ∈ 𝑆) → ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩ ∈ ((ℤ𝑀) × 𝑆))
11098, 108, 109syl2anc 411 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩ ∈ ((ℤ𝑀) × 𝑆))
111107, 110eqeltrrd 2274 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩ ∈ ((ℤ𝑀) × 𝑆))
112 oveq1 5929 . . . . . . . . . . . 12 (𝑥 = (1st ‘(𝑅𝑘)) → (𝑥 + 1) = ((1st ‘(𝑅𝑘)) + 1))
113 fvoveq1 5945 . . . . . . . . . . . . 13 (𝑥 = (1st ‘(𝑅𝑘)) → (𝐹‘(𝑥 + 1)) = (𝐹‘((1st ‘(𝑅𝑘)) + 1)))
114113oveq2d 5938 . . . . . . . . . . . 12 (𝑥 = (1st ‘(𝑅𝑘)) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
115112, 114opeq12d 3816 . . . . . . . . . . 11 (𝑥 = (1st ‘(𝑅𝑘)) → ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩ = ⟨((1st ‘(𝑅𝑘)) + 1), (𝑦 + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
116 oveq1 5929 . . . . . . . . . . . 12 (𝑦 = (2nd ‘(𝑅𝑘)) → (𝑦 + (𝐹‘((1st ‘(𝑅𝑘)) + 1))) = ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1))))
117116opeq2d 3815 . . . . . . . . . . 11 (𝑦 = (2nd ‘(𝑅𝑘)) → ⟨((1st ‘(𝑅𝑘)) + 1), (𝑦 + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩ = ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
118115, 117, 45ovmpog 6057 . . . . . . . . . 10 (((1st ‘(𝑅𝑘)) ∈ (ℤ𝑀) ∧ (2nd ‘(𝑅𝑘)) ∈ V ∧ ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩ ∈ ((ℤ𝑀) × 𝑆)) → ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd ‘(𝑅𝑘))) = ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
11984, 87, 111, 118syl3anc 1249 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd ‘(𝑅𝑘))) = ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
12050ad2antlr 489 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ∀𝑢 ∈ ((ℤ𝑀) × 𝑆)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝑆))
12152ad2antlr 489 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝑆))
122 frecsuc 6465 . . . . . . . . . . . 12 ((∀𝑢 ∈ ((ℤ𝑀) × 𝑆)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝑆) ∧ ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝑆) ∧ 𝑘 ∈ ω) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
123120, 121, 81, 122syl3anc 1249 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
124 simpr 110 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘))
125124fveq2d 5562 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(𝑅𝑘)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
126123, 125eqtr4d 2232 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(𝑅𝑘)))
127 1st2nd2 6233 . . . . . . . . . . . . 13 ((𝑅𝑘) ∈ ((ℤ𝑀) × 𝑆) → (𝑅𝑘) = ⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩)
12882, 127syl 14 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅𝑘) = ⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩)
129128fveq2d 5562 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(𝑅𝑘)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩))
130 df-ov 5925 . . . . . . . . . . 11 ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd ‘(𝑅𝑘))) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩)
131129, 130eqtr4di 2247 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)‘(𝑅𝑘)) = ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd ‘(𝑅𝑘))))
132126, 131eqtrd 2229 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘) = ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)(2nd ‘(𝑅𝑘))))
13314fveq1i 5559 . . . . . . . . . . . . . . 15 (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘)
13419fveq2d 5562 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘⟨(1st𝑢), (2nd𝑢)⟩))
135 df-ov 5925 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd𝑢)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘⟨(1st𝑢), (2nd𝑢)⟩)
136134, 135eqtr4di 2247 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) = ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd𝑢)))
137 fvoveq1 5945 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = (1st𝑢) → (𝐹‘(𝑧 + 1)) = (𝐹‘((1st𝑢) + 1)))
138137oveq2d 5938 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = (1st𝑢) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘((1st𝑢) + 1))))
139 oveq1 5929 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = (2nd𝑢) → (𝑤 + (𝐹‘((1st𝑢) + 1))) = ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))))
140138, 139, 104ovmpog 6057 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1st𝑢) ∈ (ℤ𝑀) ∧ (2nd𝑢) ∈ 𝑆 ∧ ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))) ∈ 𝑆) → ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢)) = ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))))
14124, 26, 36, 140syl3anc 1249 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢)) = ((2nd𝑢) + (𝐹‘((1st𝑢) + 1))))
142141, 36eqeltrd 2273 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢)) ∈ 𝑆)
143 opelxpi 4695 . . . . . . . . . . . . . . . . . . . . . 22 ((((1st𝑢) + 1) ∈ (ℤ𝑀) ∧ ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢)) ∈ 𝑆) → ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩ ∈ ((ℤ𝑀) × 𝑆))
14429, 142, 143syl2anc 411 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩ ∈ ((ℤ𝑀) × 𝑆))
145 oveq1 5929 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (1st𝑢) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦))
14639, 145opeq12d 3816 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (1st𝑢) → ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩ = ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)
147 oveq2 5930 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (2nd𝑢) → ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢)))
148147opeq2d 3815 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (2nd𝑢) → ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩ = ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩)
149 eqid 2196 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)
150146, 148, 149ovmpog 6057 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑢) ∈ (ℤ𝑀) ∧ (2nd𝑢) ∈ V ∧ ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩ ∈ ((ℤ𝑀) × 𝑆)) → ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd𝑢)) = ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩)
15124, 27, 144, 150syl3anc 1249 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → ((1st𝑢)(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd𝑢)) = ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩)
152136, 151eqtrd 2229 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) = ⟨((1st𝑢) + 1), ((1st𝑢)(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd𝑢))⟩)
153152, 144eqeltrd 2273 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ ((ℤ𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝑆))
154153ralrimiva 2570 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑢 ∈ ((ℤ𝑀) × 𝑆)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝑆))
155154ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ∀𝑢 ∈ ((ℤ𝑀) × 𝑆)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝑆))
156 frecsuc 6465 . . . . . . . . . . . . . . . 16 ((∀𝑢 ∈ ((ℤ𝑀) × 𝑆)((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘𝑢) ∈ ((ℤ𝑀) × 𝑆) ∧ ⟨𝑀, (𝐹𝑀)⟩ ∈ ((ℤ𝑀) × 𝑆) ∧ 𝑘 ∈ ω) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
157155, 121, 81, 156syl3anc 1249 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
158133, 157eqtrid 2241 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)))
15914fveq1i 5559 . . . . . . . . . . . . . . 15 (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)
160159fveq2i 5561 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(𝑅𝑘)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘))
161158, 160eqtr4di 2247 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(𝑅𝑘)))
162128fveq2d 5562 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘(𝑅𝑘)) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩))
163161, 162eqtrd 2229 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩))
164 df-ov 5925 . . . . . . . . . . . 12 ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd ‘(𝑅𝑘))) = ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩)
165163, 164eqtr4di 2247 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅‘suc 𝑘) = ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd ‘(𝑅𝑘))))
166 oveq1 5929 . . . . . . . . . . . . . 14 (𝑥 = (1st ‘(𝑅𝑘)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦))
167112, 166opeq12d 3816 . . . . . . . . . . . . 13 (𝑥 = (1st ‘(𝑅𝑘)) → ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩ = ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)
168 oveq2 5930 . . . . . . . . . . . . . 14 (𝑦 = (2nd ‘(𝑅𝑘)) → ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘))))
169168opeq2d 3815 . . . . . . . . . . . . 13 (𝑦 = (2nd ‘(𝑅𝑘)) → ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩ = ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩)
170167, 169, 149ovmpog 6057 . . . . . . . . . . . 12 (((1st ‘(𝑅𝑘)) ∈ (ℤ𝑀) ∧ (2nd ‘(𝑅𝑘)) ∈ V ∧ ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩ ∈ ((ℤ𝑀) × 𝑆)) → ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd ‘(𝑅𝑘))) = ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩)
17184, 87, 110, 170syl3anc 1249 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → ((1st ‘(𝑅𝑘))(𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)(2nd ‘(𝑅𝑘))) = ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩)
172165, 171eqtrd 2229 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅‘suc 𝑘) = ⟨((1st ‘(𝑅𝑘)) + 1), ((1st ‘(𝑅𝑘))(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅𝑘)))⟩)
173172, 107eqtrd 2229 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅‘suc 𝑘) = ⟨((1st ‘(𝑅𝑘)) + 1), ((2nd ‘(𝑅𝑘)) + (𝐹‘((1st ‘(𝑅𝑘)) + 1)))⟩)
174119, 132, 1733eqtr4rd 2240 . . . . . . . 8 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘))
175174exp31 364 . . . . . . 7 (𝑘 ∈ ω → (𝜑 → ((𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘) → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘))))
176175a2d 26 . . . . . 6 (𝑘 ∈ ω → ((𝜑 → (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑘)) → (𝜑 → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘suc 𝑘))))
17760, 64, 68, 72, 79, 176finds 4636 . . . . 5 (𝑛 ∈ ω → (𝜑 → (𝑅𝑛) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑛)))
178177impcom 125 . . . 4 ((𝜑𝑛 ∈ ω) → (𝑅𝑛) = (frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)‘𝑛))
17917, 56, 178eqfnfvd 5662 . . 3 (𝜑𝑅 = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩))
180179rneqd 4895 . 2 (𝜑 → ran 𝑅 = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩))
1811, 180eqtr4id 2248 1 (𝜑 → seq𝑀( + , 𝐹) = ran 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  wss 3157  c0 3450  cop 3625  suc csuc 4400  ωcom 4626   × cxp 4661  ran crn 4664   Fn wfn 5253  wf 5254  cfv 5258  (class class class)co 5922  cmpo 5924  1st c1st 6196  2nd c2nd 6197  freccfrec 6448  1c1 7880   + caddc 7882  cz 9326  cuz 9601  seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540
This theorem is referenced by:  seq3-1  10554  seqf  10556  seq3p1  10557
  Copyright terms: Public domain W3C validator