ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqovex GIF version

Theorem iseqovex 10529
Description: Closure of a function used in proving sequence builder theorems. This can be thought of as a lemma for the small number of sequence builder theorems which need it. (Contributed by Jim Kingdon, 31-May-2020.)
Hypotheses
Ref Expression
iseqovex.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqovex.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
iseqovex ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆)
Distinct variable groups:   𝑤,𝐹,𝑥,𝑦,𝑧   𝑤, + ,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧   𝜑,𝑤,𝑥,𝑦,𝑧   𝑤,𝑀,𝑥,𝑧
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem iseqovex
StepHypRef Expression
1 eqidd 2194 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))))
2 simprr 531 . . . 4 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → 𝑤 = 𝑦)
3 simprl 529 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → 𝑧 = 𝑥)
43oveq1d 5933 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → (𝑧 + 1) = (𝑥 + 1))
54fveq2d 5558 . . . 4 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1)))
62, 5oveq12d 5936 . . 3 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1))))
7 simprl 529 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → 𝑥 ∈ (ℤ𝑀))
8 simprr 531 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → 𝑦𝑆)
9 iseqovex.pl . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
109caovclg 6071 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧 + 𝑤) ∈ 𝑆)
1110adantlr 477 . . . 4 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑧𝑆𝑤𝑆)) → (𝑧 + 𝑤) ∈ 𝑆)
12 fveq2 5554 . . . . . 6 (𝑧 = (𝑥 + 1) → (𝐹𝑧) = (𝐹‘(𝑥 + 1)))
1312eleq1d 2262 . . . . 5 (𝑧 = (𝑥 + 1) → ((𝐹𝑧) ∈ 𝑆 ↔ (𝐹‘(𝑥 + 1)) ∈ 𝑆))
14 iseqovex.f . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
1514ralrimiva 2567 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
16 fveq2 5554 . . . . . . . . 9 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1716eleq1d 2262 . . . . . . . 8 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑧) ∈ 𝑆))
1817cbvralv 2726 . . . . . . 7 (∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆 ↔ ∀𝑧 ∈ (ℤ𝑀)(𝐹𝑧) ∈ 𝑆)
1915, 18sylib 122 . . . . . 6 (𝜑 → ∀𝑧 ∈ (ℤ𝑀)(𝐹𝑧) ∈ 𝑆)
2019adantr 276 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → ∀𝑧 ∈ (ℤ𝑀)(𝐹𝑧) ∈ 𝑆)
21 peano2uz 9648 . . . . . 6 (𝑥 ∈ (ℤ𝑀) → (𝑥 + 1) ∈ (ℤ𝑀))
227, 21syl 14 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥 + 1) ∈ (ℤ𝑀))
2313, 20, 22rspcdva 2869 . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝐹‘(𝑥 + 1)) ∈ 𝑆)
2411, 8, 23caovcld 6072 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆)
251, 6, 7, 8, 24ovmpod 6046 . 2 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
2625, 24eqeltrd 2270 1 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  cfv 5254  (class class class)co 5918  cmpo 5920  1c1 7873   + caddc 7875  cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593
This theorem is referenced by:  seq3val  10531  seq3-1  10533  seq3p1  10536
  Copyright terms: Public domain W3C validator