![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iseqovex | GIF version |
Description: Closure of a function used in proving sequence builder theorems. This can be thought of as a lemma for the small number of sequence builder theorems which need it. (Contributed by Jim Kingdon, 31-May-2020.) |
Ref | Expression |
---|---|
iseqovex.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
iseqovex.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
Ref | Expression |
---|---|
iseqovex | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2194 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))) | |
2 | simprr 531 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑦) | |
3 | simprl 529 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → 𝑧 = 𝑥) | |
4 | 3 | oveq1d 5934 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → (𝑧 + 1) = (𝑥 + 1)) |
5 | 4 | fveq2d 5559 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1))) |
6 | 2, 5 | oveq12d 5937 | . . 3 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1)))) |
7 | simprl 529 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ (ℤ≥‘𝑀)) | |
8 | simprr 531 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) | |
9 | iseqovex.pl | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
10 | 9 | caovclg 6073 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧 + 𝑤) ∈ 𝑆) |
11 | 10 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧 + 𝑤) ∈ 𝑆) |
12 | fveq2 5555 | . . . . . 6 ⊢ (𝑧 = (𝑥 + 1) → (𝐹‘𝑧) = (𝐹‘(𝑥 + 1))) | |
13 | 12 | eleq1d 2262 | . . . . 5 ⊢ (𝑧 = (𝑥 + 1) → ((𝐹‘𝑧) ∈ 𝑆 ↔ (𝐹‘(𝑥 + 1)) ∈ 𝑆)) |
14 | iseqovex.f | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
15 | 14 | ralrimiva 2567 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
16 | fveq2 5555 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
17 | 16 | eleq1d 2262 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘𝑧) ∈ 𝑆)) |
18 | 17 | cbvralv 2726 | . . . . . . 7 ⊢ (∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆 ↔ ∀𝑧 ∈ (ℤ≥‘𝑀)(𝐹‘𝑧) ∈ 𝑆) |
19 | 15, 18 | sylib 122 | . . . . . 6 ⊢ (𝜑 → ∀𝑧 ∈ (ℤ≥‘𝑀)(𝐹‘𝑧) ∈ 𝑆) |
20 | 19 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → ∀𝑧 ∈ (ℤ≥‘𝑀)(𝐹‘𝑧) ∈ 𝑆) |
21 | peano2uz 9651 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘𝑀) → (𝑥 + 1) ∈ (ℤ≥‘𝑀)) | |
22 | 7, 21 | syl 14 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 1) ∈ (ℤ≥‘𝑀)) |
23 | 13, 20, 22 | rspcdva 2870 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝐹‘(𝑥 + 1)) ∈ 𝑆) |
24 | 11, 8, 23 | caovcld 6074 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆) |
25 | 1, 6, 7, 8, 24 | ovmpod 6047 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1)))) |
26 | 25, 24 | eqeltrd 2270 | 1 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ‘cfv 5255 (class class class)co 5919 ∈ cmpo 5921 1c1 7875 + caddc 7877 ℤ≥cuz 9595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 |
This theorem is referenced by: seq3val 10534 seq3-1 10536 seq3p1 10539 |
Copyright terms: Public domain | W3C validator |