Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iseqovex | GIF version |
Description: Closure of a function used in proving sequence builder theorems. This can be thought of as a lemma for the small number of sequence builder theorems which need it. (Contributed by Jim Kingdon, 31-May-2020.) |
Ref | Expression |
---|---|
iseqovex.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
iseqovex.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
Ref | Expression |
---|---|
iseqovex | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2176 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))) | |
2 | simprr 531 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑦) | |
3 | simprl 529 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → 𝑧 = 𝑥) | |
4 | 3 | oveq1d 5880 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → (𝑧 + 1) = (𝑥 + 1)) |
5 | 4 | fveq2d 5511 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1))) |
6 | 2, 5 | oveq12d 5883 | . . 3 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1)))) |
7 | simprl 529 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ (ℤ≥‘𝑀)) | |
8 | simprr 531 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) | |
9 | iseqovex.pl | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
10 | 9 | caovclg 6017 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧 + 𝑤) ∈ 𝑆) |
11 | 10 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧 + 𝑤) ∈ 𝑆) |
12 | fveq2 5507 | . . . . . 6 ⊢ (𝑧 = (𝑥 + 1) → (𝐹‘𝑧) = (𝐹‘(𝑥 + 1))) | |
13 | 12 | eleq1d 2244 | . . . . 5 ⊢ (𝑧 = (𝑥 + 1) → ((𝐹‘𝑧) ∈ 𝑆 ↔ (𝐹‘(𝑥 + 1)) ∈ 𝑆)) |
14 | iseqovex.f | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
15 | 14 | ralrimiva 2548 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
16 | fveq2 5507 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
17 | 16 | eleq1d 2244 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘𝑧) ∈ 𝑆)) |
18 | 17 | cbvralv 2701 | . . . . . . 7 ⊢ (∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆 ↔ ∀𝑧 ∈ (ℤ≥‘𝑀)(𝐹‘𝑧) ∈ 𝑆) |
19 | 15, 18 | sylib 122 | . . . . . 6 ⊢ (𝜑 → ∀𝑧 ∈ (ℤ≥‘𝑀)(𝐹‘𝑧) ∈ 𝑆) |
20 | 19 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → ∀𝑧 ∈ (ℤ≥‘𝑀)(𝐹‘𝑧) ∈ 𝑆) |
21 | peano2uz 9554 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘𝑀) → (𝑥 + 1) ∈ (ℤ≥‘𝑀)) | |
22 | 7, 21 | syl 14 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 1) ∈ (ℤ≥‘𝑀)) |
23 | 13, 20, 22 | rspcdva 2844 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝐹‘(𝑥 + 1)) ∈ 𝑆) |
24 | 11, 8, 23 | caovcld 6018 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆) |
25 | 1, 6, 7, 8, 24 | ovmpod 5992 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1)))) |
26 | 25, 24 | eqeltrd 2252 | 1 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 ∀wral 2453 ‘cfv 5208 (class class class)co 5865 ∈ cmpo 5867 1c1 7787 + caddc 7789 ℤ≥cuz 9499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8891 df-n0 9148 df-z 9225 df-uz 9500 |
This theorem is referenced by: seq3val 10426 seq3-1 10428 seq3p1 10430 |
Copyright terms: Public domain | W3C validator |