| Step | Hyp | Ref
 | Expression | 
| 1 |   | frec2uz.1 | 
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℤ) | 
| 2 | 1 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 𝐶 ∈ ℤ) | 
| 3 |   | frec2uz.2 | 
. . . . . 6
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | 
| 4 |   | frecuzrdgrrn.a | 
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑆) | 
| 5 | 4 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 𝐴 ∈ 𝑆) | 
| 6 |   | frecuzrdgrrn.f | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | 
| 7 | 6 | adantlr 477 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | 
| 8 |   | frecuzrdgrrn.2 | 
. . . . . 6
⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) | 
| 9 |   | peano2uz 9657 | 
. . . . . . 7
⊢ (𝐵 ∈
(ℤ≥‘𝐶) → (𝐵 + 1) ∈
(ℤ≥‘𝐶)) | 
| 10 | 9 | adantl 277 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐵 + 1) ∈
(ℤ≥‘𝐶)) | 
| 11 | 2, 3, 5, 7, 8, 10 | frecuzrdglem 10503 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 〈(𝐵 + 1), (2nd
‘(𝑅‘(◡𝐺‘(𝐵 + 1))))〉 ∈ ran 𝑅) | 
| 12 |   | frecuzrdgtcl.3 | 
. . . . . 6
⊢ (𝜑 → 𝑇 = ran 𝑅) | 
| 13 | 12 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 𝑇 = ran 𝑅) | 
| 14 | 11, 13 | eleqtrrd 2276 | 
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 〈(𝐵 + 1), (2nd
‘(𝑅‘(◡𝐺‘(𝐵 + 1))))〉 ∈ 𝑇) | 
| 15 | 1, 3, 4, 6, 8, 12 | frecuzrdgtcl 10504 | 
. . . . . . 7
⊢ (𝜑 → 𝑇:(ℤ≥‘𝐶)⟶𝑆) | 
| 16 |   | ffun 5410 | 
. . . . . . 7
⊢ (𝑇:(ℤ≥‘𝐶)⟶𝑆 → Fun 𝑇) | 
| 17 | 15, 16 | syl 14 | 
. . . . . 6
⊢ (𝜑 → Fun 𝑇) | 
| 18 |   | funopfv 5600 | 
. . . . . 6
⊢ (Fun
𝑇 → (〈(𝐵 + 1), (2nd
‘(𝑅‘(◡𝐺‘(𝐵 + 1))))〉 ∈ 𝑇 → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(◡𝐺‘(𝐵 + 1)))))) | 
| 19 | 17, 18 | syl 14 | 
. . . . 5
⊢ (𝜑 → (〈(𝐵 + 1), (2nd ‘(𝑅‘(◡𝐺‘(𝐵 + 1))))〉 ∈ 𝑇 → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(◡𝐺‘(𝐵 + 1)))))) | 
| 20 | 19 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (〈(𝐵 + 1), (2nd
‘(𝑅‘(◡𝐺‘(𝐵 + 1))))〉 ∈ 𝑇 → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(◡𝐺‘(𝐵 + 1)))))) | 
| 21 | 14, 20 | mpd 13 | 
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(◡𝐺‘(𝐵 + 1))))) | 
| 22 | 1, 3 | frec2uzf1od 10498 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) | 
| 23 |   | f1ocnvdm 5828 | 
. . . . . . . . 9
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝐵) ∈ ω) | 
| 24 | 22, 23 | sylan 283 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝐵) ∈ ω) | 
| 25 | 2, 3, 24 | frec2uzsucd 10493 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐺‘suc (◡𝐺‘𝐵)) = ((𝐺‘(◡𝐺‘𝐵)) + 1)) | 
| 26 |   | f1ocnvfv2 5825 | 
. . . . . . . . 9
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) | 
| 27 | 22, 26 | sylan 283 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) | 
| 28 | 27 | oveq1d 5937 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ((𝐺‘(◡𝐺‘𝐵)) + 1) = (𝐵 + 1)) | 
| 29 | 25, 28 | eqtrd 2229 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐺‘suc (◡𝐺‘𝐵)) = (𝐵 + 1)) | 
| 30 |   | peano2 4631 | 
. . . . . . . 8
⊢ ((◡𝐺‘𝐵) ∈ ω → suc (◡𝐺‘𝐵) ∈ ω) | 
| 31 | 24, 30 | syl 14 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → suc (◡𝐺‘𝐵) ∈ ω) | 
| 32 |   | f1ocnvfv 5826 | 
. . . . . . 7
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ suc (◡𝐺‘𝐵) ∈ ω) → ((𝐺‘suc (◡𝐺‘𝐵)) = (𝐵 + 1) → (◡𝐺‘(𝐵 + 1)) = suc (◡𝐺‘𝐵))) | 
| 33 | 22, 31, 32 | syl2an2r 595 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ((𝐺‘suc (◡𝐺‘𝐵)) = (𝐵 + 1) → (◡𝐺‘(𝐵 + 1)) = suc (◡𝐺‘𝐵))) | 
| 34 | 29, 33 | mpd 13 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘(𝐵 + 1)) = suc (◡𝐺‘𝐵)) | 
| 35 | 34 | fveq2d 5562 | 
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘(𝐵 + 1))) = (𝑅‘suc (◡𝐺‘𝐵))) | 
| 36 | 35 | fveq2d 5562 | 
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘(◡𝐺‘(𝐵 + 1)))) = (2nd ‘(𝑅‘suc (◡𝐺‘𝐵)))) | 
| 37 | 21, 36 | eqtrd 2229 | 
. 2
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘suc (◡𝐺‘𝐵)))) | 
| 38 |   | 1st2nd2 6233 | 
. . . . . . . . . . 11
⊢ (𝑧 ∈
((ℤ≥‘𝐶) × 𝑆) → 𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉) | 
| 39 | 38 | adantl 277 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → 𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉) | 
| 40 | 39 | fveq2d 5562 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(1st
‘𝑧), (2nd
‘𝑧)〉)) | 
| 41 |   | df-ov 5925 | 
. . . . . . . . . . 11
⊢
((1st ‘𝑧)(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘𝑧)) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(1st
‘𝑧), (2nd
‘𝑧)〉) | 
| 42 |   | xp1st 6223 | 
. . . . . . . . . . . . 13
⊢ (𝑧 ∈
((ℤ≥‘𝐶) × 𝑆) → (1st ‘𝑧) ∈
(ℤ≥‘𝐶)) | 
| 43 | 42 | adantl 277 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → (1st ‘𝑧) ∈
(ℤ≥‘𝐶)) | 
| 44 |   | xp2nd 6224 | 
. . . . . . . . . . . . 13
⊢ (𝑧 ∈
((ℤ≥‘𝐶) × 𝑆) → (2nd ‘𝑧) ∈ 𝑆) | 
| 45 | 44 | adantl 277 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → (2nd ‘𝑧) ∈ 𝑆) | 
| 46 |   | peano2uz 9657 | 
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑧) ∈ (ℤ≥‘𝐶) → ((1st
‘𝑧) + 1) ∈
(ℤ≥‘𝐶)) | 
| 47 | 43, 46 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((1st ‘𝑧) + 1) ∈
(ℤ≥‘𝐶)) | 
| 48 |   | oveq2 5930 | 
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (2nd ‘𝑧) → ((1st
‘𝑧)𝐹𝑦) = ((1st ‘𝑧)𝐹(2nd ‘𝑧))) | 
| 49 | 48 | eleq1d 2265 | 
. . . . . . . . . . . . . 14
⊢ (𝑦 = (2nd ‘𝑧) → (((1st
‘𝑧)𝐹𝑦) ∈ 𝑆 ↔ ((1st ‘𝑧)𝐹(2nd ‘𝑧)) ∈ 𝑆)) | 
| 50 |   | oveq1 5929 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (1st ‘𝑧) → (𝑥𝐹𝑦) = ((1st ‘𝑧)𝐹𝑦)) | 
| 51 | 50 | eleq1d 2265 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (1st ‘𝑧) → ((𝑥𝐹𝑦) ∈ 𝑆 ↔ ((1st ‘𝑧)𝐹𝑦) ∈ 𝑆)) | 
| 52 | 51 | ralbidv 2497 | 
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (1st ‘𝑧) → (∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝑆 ↔ ∀𝑦 ∈ 𝑆 ((1st ‘𝑧)𝐹𝑦) ∈ 𝑆)) | 
| 53 | 6 | ralrimivva 2579 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝐶)∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝑆) | 
| 54 | 53 | ad2antrr 488 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ∀𝑥 ∈ (ℤ≥‘𝐶)∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝑆) | 
| 55 | 52, 54, 43 | rspcdva 2873 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ∀𝑦 ∈ 𝑆 ((1st ‘𝑧)𝐹𝑦) ∈ 𝑆) | 
| 56 | 49, 55, 45 | rspcdva 2873 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((1st ‘𝑧)𝐹(2nd ‘𝑧)) ∈ 𝑆) | 
| 57 |   | opelxp 4693 | 
. . . . . . . . . . . . 13
⊢
(〈((1st ‘𝑧) + 1), ((1st ‘𝑧)𝐹(2nd ‘𝑧))〉 ∈
((ℤ≥‘𝐶) × 𝑆) ↔ (((1st ‘𝑧) + 1) ∈
(ℤ≥‘𝐶) ∧ ((1st ‘𝑧)𝐹(2nd ‘𝑧)) ∈ 𝑆)) | 
| 58 | 47, 56, 57 | sylanbrc 417 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹(2nd ‘𝑧))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) | 
| 59 |   | oveq1 5929 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = (1st ‘𝑧) → (𝑥 + 1) = ((1st ‘𝑧) + 1)) | 
| 60 | 59, 50 | opeq12d 3816 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘𝑧) → 〈(𝑥 + 1), (𝑥𝐹𝑦)〉 = 〈((1st ‘𝑧) + 1), ((1st
‘𝑧)𝐹𝑦)〉) | 
| 61 | 48 | opeq2d 3815 | 
. . . . . . . . . . . . 13
⊢ (𝑦 = (2nd ‘𝑧) → 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹𝑦)〉 = 〈((1st ‘𝑧) + 1), ((1st
‘𝑧)𝐹(2nd ‘𝑧))〉) | 
| 62 |   | eqid 2196 | 
. . . . . . . . . . . . 13
⊢ (𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉) = (𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉) | 
| 63 | 60, 61, 62 | ovmpog 6057 | 
. . . . . . . . . . . 12
⊢
(((1st ‘𝑧) ∈ (ℤ≥‘𝐶) ∧ (2nd
‘𝑧) ∈ 𝑆 ∧ 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹(2nd ‘𝑧))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) → ((1st ‘𝑧)(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘𝑧)) = 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹(2nd ‘𝑧))〉) | 
| 64 | 43, 45, 58, 63 | syl3anc 1249 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((1st ‘𝑧)(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘𝑧)) = 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹(2nd ‘𝑧))〉) | 
| 65 | 41, 64 | eqtr3id 2243 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(1st
‘𝑧), (2nd
‘𝑧)〉) =
〈((1st ‘𝑧) + 1), ((1st ‘𝑧)𝐹(2nd ‘𝑧))〉) | 
| 66 | 65, 58 | eqeltrd 2273 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(1st
‘𝑧), (2nd
‘𝑧)〉) ∈
((ℤ≥‘𝐶) × 𝑆)) | 
| 67 | 40, 66 | eqeltrd 2273 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) ∈ ((ℤ≥‘𝐶) × 𝑆)) | 
| 68 | 67 | ralrimiva 2570 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ∀𝑧 ∈
((ℤ≥‘𝐶) × 𝑆)((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) ∈ ((ℤ≥‘𝐶) × 𝑆)) | 
| 69 |   | uzid 9615 | 
. . . . . . . . 9
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
(ℤ≥‘𝐶)) | 
| 70 | 2, 69 | syl 14 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 𝐶 ∈ (ℤ≥‘𝐶)) | 
| 71 |   | opelxp 4693 | 
. . . . . . . 8
⊢
(〈𝐶, 𝐴〉 ∈
((ℤ≥‘𝐶) × 𝑆) ↔ (𝐶 ∈ (ℤ≥‘𝐶) ∧ 𝐴 ∈ 𝑆)) | 
| 72 | 70, 5, 71 | sylanbrc 417 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 〈𝐶, 𝐴〉 ∈
((ℤ≥‘𝐶) × 𝑆)) | 
| 73 |   | frecsuc 6465 | 
. . . . . . 7
⊢
((∀𝑧 ∈
((ℤ≥‘𝐶) × 𝑆)((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) ∈ ((ℤ≥‘𝐶) × 𝑆) ∧ 〈𝐶, 𝐴〉 ∈
((ℤ≥‘𝐶) × 𝑆) ∧ (◡𝐺‘𝐵) ∈ ω) → (frec((𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘suc (◡𝐺‘𝐵)) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘(◡𝐺‘𝐵)))) | 
| 74 | 68, 72, 24, 73 | syl3anc 1249 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (frec((𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘suc (◡𝐺‘𝐵)) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘(◡𝐺‘𝐵)))) | 
| 75 | 8 | fveq1i 5559 | 
. . . . . 6
⊢ (𝑅‘suc (◡𝐺‘𝐵)) = (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘suc (◡𝐺‘𝐵)) | 
| 76 | 8 | fveq1i 5559 | 
. . . . . . 7
⊢ (𝑅‘(◡𝐺‘𝐵)) = (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘(◡𝐺‘𝐵)) | 
| 77 | 76 | fveq2i 5561 | 
. . . . . 6
⊢ ((𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(𝑅‘(◡𝐺‘𝐵))) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘(◡𝐺‘𝐵))) | 
| 78 | 74, 75, 77 | 3eqtr4g 2254 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘suc (◡𝐺‘𝐵)) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(𝑅‘(◡𝐺‘𝐵)))) | 
| 79 | 2, 3, 5, 7, 8, 24 | frec2uzrdg 10501 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝐵)) = 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) | 
| 80 | 79 | fveq2d 5562 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(𝑅‘(◡𝐺‘𝐵))) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉)) | 
| 81 |   | df-ov 5925 | 
. . . . . 6
⊢ ((𝐺‘(◡𝐺‘𝐵))(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) | 
| 82 | 80, 81 | eqtr4di 2247 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(𝑅‘(◡𝐺‘𝐵))) = ((𝐺‘(◡𝐺‘𝐵))(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) | 
| 83 | 2, 3, 24 | frec2uzuzd 10494 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐺‘(◡𝐺‘𝐵)) ∈
(ℤ≥‘𝐶)) | 
| 84 | 2, 3, 5, 7, 8 | frecuzrdgrrn 10500 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ (◡𝐺‘𝐵) ∈ ω) → (𝑅‘(◡𝐺‘𝐵)) ∈
((ℤ≥‘𝐶) × 𝑆)) | 
| 85 | 24, 84 | mpdan 421 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝐵)) ∈
((ℤ≥‘𝐶) × 𝑆)) | 
| 86 |   | xp2nd 6224 | 
. . . . . . 7
⊢ ((𝑅‘(◡𝐺‘𝐵)) ∈
((ℤ≥‘𝐶) × 𝑆) → (2nd ‘(𝑅‘(◡𝐺‘𝐵))) ∈ 𝑆) | 
| 87 | 85, 86 | syl 14 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘(◡𝐺‘𝐵))) ∈ 𝑆) | 
| 88 | 28, 10 | eqeltrd 2273 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ((𝐺‘(◡𝐺‘𝐵)) + 1) ∈
(ℤ≥‘𝐶)) | 
| 89 | 7 | caovclg 6076 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ (𝑧 ∈ (ℤ≥‘𝐶) ∧ 𝑤 ∈ 𝑆)) → (𝑧𝐹𝑤) ∈ 𝑆) | 
| 90 | 89, 83, 87 | caovcld 6077 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) ∈ 𝑆) | 
| 91 |   | opelxp 4693 | 
. . . . . . 7
⊢
(〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉 ∈
((ℤ≥‘𝐶) × 𝑆) ↔ (((𝐺‘(◡𝐺‘𝐵)) + 1) ∈
(ℤ≥‘𝐶) ∧ ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) ∈ 𝑆)) | 
| 92 | 88, 90, 91 | sylanbrc 417 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) | 
| 93 |   | oveq1 5929 | 
. . . . . . . 8
⊢ (𝑧 = (𝐺‘(◡𝐺‘𝐵)) → (𝑧 + 1) = ((𝐺‘(◡𝐺‘𝐵)) + 1)) | 
| 94 |   | oveq1 5929 | 
. . . . . . . 8
⊢ (𝑧 = (𝐺‘(◡𝐺‘𝐵)) → (𝑧𝐹𝑤) = ((𝐺‘(◡𝐺‘𝐵))𝐹𝑤)) | 
| 95 | 93, 94 | opeq12d 3816 | 
. . . . . . 7
⊢ (𝑧 = (𝐺‘(◡𝐺‘𝐵)) → 〈(𝑧 + 1), (𝑧𝐹𝑤)〉 = 〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹𝑤)〉) | 
| 96 |   | oveq2 5930 | 
. . . . . . . 8
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝐵))) → ((𝐺‘(◡𝐺‘𝐵))𝐹𝑤) = ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) | 
| 97 | 96 | opeq2d 3815 | 
. . . . . . 7
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝐵))) → 〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹𝑤)〉 = 〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) | 
| 98 |   | oveq1 5929 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1)) | 
| 99 |   | oveq1 5929 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥𝐹𝑦) = (𝑧𝐹𝑦)) | 
| 100 | 98, 99 | opeq12d 3816 | 
. . . . . . . 8
⊢ (𝑥 = 𝑧 → 〈(𝑥 + 1), (𝑥𝐹𝑦)〉 = 〈(𝑧 + 1), (𝑧𝐹𝑦)〉) | 
| 101 |   | oveq2 5930 | 
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝑧𝐹𝑦) = (𝑧𝐹𝑤)) | 
| 102 | 101 | opeq2d 3815 | 
. . . . . . . 8
⊢ (𝑦 = 𝑤 → 〈(𝑧 + 1), (𝑧𝐹𝑦)〉 = 〈(𝑧 + 1), (𝑧𝐹𝑤)〉) | 
| 103 | 100, 102 | cbvmpov 6002 | 
. . . . . . 7
⊢ (𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉) = (𝑧 ∈ (ℤ≥‘𝐶), 𝑤 ∈ 𝑆 ↦ 〈(𝑧 + 1), (𝑧𝐹𝑤)〉) | 
| 104 | 95, 97, 103 | ovmpog 6057 | 
. . . . . 6
⊢ (((𝐺‘(◡𝐺‘𝐵)) ∈
(ℤ≥‘𝐶) ∧ (2nd ‘(𝑅‘(◡𝐺‘𝐵))) ∈ 𝑆 ∧ 〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) → ((𝐺‘(◡𝐺‘𝐵))(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) = 〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) | 
| 105 | 83, 87, 92, 104 | syl3anc 1249 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ((𝐺‘(◡𝐺‘𝐵))(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) = 〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) | 
| 106 | 78, 82, 105 | 3eqtrd 2233 | 
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘suc (◡𝐺‘𝐵)) = 〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) | 
| 107 | 106 | fveq2d 5562 | 
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘suc (◡𝐺‘𝐵))) = (2nd ‘〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉)) | 
| 108 |   | op2ndg 6209 | 
. . . 4
⊢ ((((𝐺‘(◡𝐺‘𝐵)) + 1) ∈
(ℤ≥‘𝐶) ∧ ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) ∈ 𝑆) → (2nd
‘〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) = ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) | 
| 109 | 88, 90, 108 | syl2anc 411 | 
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (2nd
‘〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) = ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) | 
| 110 | 107, 109 | eqtrd 2229 | 
. 2
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘suc (◡𝐺‘𝐵))) = ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) | 
| 111 |   | simpr 110 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 𝐵 ∈ (ℤ≥‘𝐶)) | 
| 112 | 2, 3, 5, 7, 8, 111 | frecuzrdglem 10503 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) | 
| 113 | 112, 13 | eleqtrrd 2276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ 𝑇) | 
| 114 |   | funopfv 5600 | 
. . . . . . 7
⊢ (Fun
𝑇 → (〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ 𝑇 → (𝑇‘𝐵) = (2nd ‘(𝑅‘(◡𝐺‘𝐵))))) | 
| 115 | 17, 114 | syl 14 | 
. . . . . 6
⊢ (𝜑 → (〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ 𝑇 → (𝑇‘𝐵) = (2nd ‘(𝑅‘(◡𝐺‘𝐵))))) | 
| 116 | 115 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ 𝑇 → (𝑇‘𝐵) = (2nd ‘(𝑅‘(◡𝐺‘𝐵))))) | 
| 117 | 113, 116 | mpd 13 | 
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑇‘𝐵) = (2nd ‘(𝑅‘(◡𝐺‘𝐵)))) | 
| 118 | 117 | eqcomd 2202 | 
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘(◡𝐺‘𝐵))) = (𝑇‘𝐵)) | 
| 119 | 27, 118 | oveq12d 5940 | 
. 2
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) = (𝐵𝐹(𝑇‘𝐵))) | 
| 120 | 37, 110, 119 | 3eqtrd 2233 | 
1
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑇‘(𝐵 + 1)) = (𝐵𝐹(𝑇‘𝐵))) |