Step | Hyp | Ref
| Expression |
1 | | frec2uz.1 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℤ) |
2 | 1 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 𝐶 ∈ ℤ) |
3 | | frec2uz.2 |
. . . . . 6
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
4 | | frecuzrdgrrn.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
5 | 4 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 𝐴 ∈ 𝑆) |
6 | | frecuzrdgrrn.f |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
7 | 6 | adantlr 474 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
8 | | frecuzrdgrrn.2 |
. . . . . 6
⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
9 | | peano2uz 9542 |
. . . . . . 7
⊢ (𝐵 ∈
(ℤ≥‘𝐶) → (𝐵 + 1) ∈
(ℤ≥‘𝐶)) |
10 | 9 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐵 + 1) ∈
(ℤ≥‘𝐶)) |
11 | 2, 3, 5, 7, 8, 10 | frecuzrdglem 10367 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 〈(𝐵 + 1), (2nd
‘(𝑅‘(◡𝐺‘(𝐵 + 1))))〉 ∈ ran 𝑅) |
12 | | frecuzrdgtcl.3 |
. . . . . 6
⊢ (𝜑 → 𝑇 = ran 𝑅) |
13 | 12 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 𝑇 = ran 𝑅) |
14 | 11, 13 | eleqtrrd 2250 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 〈(𝐵 + 1), (2nd
‘(𝑅‘(◡𝐺‘(𝐵 + 1))))〉 ∈ 𝑇) |
15 | 1, 3, 4, 6, 8, 12 | frecuzrdgtcl 10368 |
. . . . . . 7
⊢ (𝜑 → 𝑇:(ℤ≥‘𝐶)⟶𝑆) |
16 | | ffun 5350 |
. . . . . . 7
⊢ (𝑇:(ℤ≥‘𝐶)⟶𝑆 → Fun 𝑇) |
17 | 15, 16 | syl 14 |
. . . . . 6
⊢ (𝜑 → Fun 𝑇) |
18 | | funopfv 5536 |
. . . . . 6
⊢ (Fun
𝑇 → (〈(𝐵 + 1), (2nd
‘(𝑅‘(◡𝐺‘(𝐵 + 1))))〉 ∈ 𝑇 → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(◡𝐺‘(𝐵 + 1)))))) |
19 | 17, 18 | syl 14 |
. . . . 5
⊢ (𝜑 → (〈(𝐵 + 1), (2nd ‘(𝑅‘(◡𝐺‘(𝐵 + 1))))〉 ∈ 𝑇 → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(◡𝐺‘(𝐵 + 1)))))) |
20 | 19 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (〈(𝐵 + 1), (2nd
‘(𝑅‘(◡𝐺‘(𝐵 + 1))))〉 ∈ 𝑇 → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(◡𝐺‘(𝐵 + 1)))))) |
21 | 14, 20 | mpd 13 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(◡𝐺‘(𝐵 + 1))))) |
22 | 1, 3 | frec2uzf1od 10362 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) |
23 | | f1ocnvdm 5760 |
. . . . . . . . 9
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝐵) ∈ ω) |
24 | 22, 23 | sylan 281 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝐵) ∈ ω) |
25 | 2, 3, 24 | frec2uzsucd 10357 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐺‘suc (◡𝐺‘𝐵)) = ((𝐺‘(◡𝐺‘𝐵)) + 1)) |
26 | | f1ocnvfv2 5757 |
. . . . . . . . 9
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) |
27 | 22, 26 | sylan 281 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) |
28 | 27 | oveq1d 5868 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ((𝐺‘(◡𝐺‘𝐵)) + 1) = (𝐵 + 1)) |
29 | 25, 28 | eqtrd 2203 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐺‘suc (◡𝐺‘𝐵)) = (𝐵 + 1)) |
30 | | peano2 4579 |
. . . . . . . 8
⊢ ((◡𝐺‘𝐵) ∈ ω → suc (◡𝐺‘𝐵) ∈ ω) |
31 | 24, 30 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → suc (◡𝐺‘𝐵) ∈ ω) |
32 | | f1ocnvfv 5758 |
. . . . . . 7
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ suc (◡𝐺‘𝐵) ∈ ω) → ((𝐺‘suc (◡𝐺‘𝐵)) = (𝐵 + 1) → (◡𝐺‘(𝐵 + 1)) = suc (◡𝐺‘𝐵))) |
33 | 22, 31, 32 | syl2an2r 590 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ((𝐺‘suc (◡𝐺‘𝐵)) = (𝐵 + 1) → (◡𝐺‘(𝐵 + 1)) = suc (◡𝐺‘𝐵))) |
34 | 29, 33 | mpd 13 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘(𝐵 + 1)) = suc (◡𝐺‘𝐵)) |
35 | 34 | fveq2d 5500 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘(𝐵 + 1))) = (𝑅‘suc (◡𝐺‘𝐵))) |
36 | 35 | fveq2d 5500 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘(◡𝐺‘(𝐵 + 1)))) = (2nd ‘(𝑅‘suc (◡𝐺‘𝐵)))) |
37 | 21, 36 | eqtrd 2203 |
. 2
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘suc (◡𝐺‘𝐵)))) |
38 | | 1st2nd2 6154 |
. . . . . . . . . . 11
⊢ (𝑧 ∈
((ℤ≥‘𝐶) × 𝑆) → 𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
39 | 38 | adantl 275 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → 𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
40 | 39 | fveq2d 5500 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(1st
‘𝑧), (2nd
‘𝑧)〉)) |
41 | | df-ov 5856 |
. . . . . . . . . . 11
⊢
((1st ‘𝑧)(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘𝑧)) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(1st
‘𝑧), (2nd
‘𝑧)〉) |
42 | | xp1st 6144 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈
((ℤ≥‘𝐶) × 𝑆) → (1st ‘𝑧) ∈
(ℤ≥‘𝐶)) |
43 | 42 | adantl 275 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → (1st ‘𝑧) ∈
(ℤ≥‘𝐶)) |
44 | | xp2nd 6145 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈
((ℤ≥‘𝐶) × 𝑆) → (2nd ‘𝑧) ∈ 𝑆) |
45 | 44 | adantl 275 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → (2nd ‘𝑧) ∈ 𝑆) |
46 | | peano2uz 9542 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑧) ∈ (ℤ≥‘𝐶) → ((1st
‘𝑧) + 1) ∈
(ℤ≥‘𝐶)) |
47 | 43, 46 | syl 14 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((1st ‘𝑧) + 1) ∈
(ℤ≥‘𝐶)) |
48 | | oveq2 5861 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (2nd ‘𝑧) → ((1st
‘𝑧)𝐹𝑦) = ((1st ‘𝑧)𝐹(2nd ‘𝑧))) |
49 | 48 | eleq1d 2239 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (2nd ‘𝑧) → (((1st
‘𝑧)𝐹𝑦) ∈ 𝑆 ↔ ((1st ‘𝑧)𝐹(2nd ‘𝑧)) ∈ 𝑆)) |
50 | | oveq1 5860 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (1st ‘𝑧) → (𝑥𝐹𝑦) = ((1st ‘𝑧)𝐹𝑦)) |
51 | 50 | eleq1d 2239 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (1st ‘𝑧) → ((𝑥𝐹𝑦) ∈ 𝑆 ↔ ((1st ‘𝑧)𝐹𝑦) ∈ 𝑆)) |
52 | 51 | ralbidv 2470 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (1st ‘𝑧) → (∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝑆 ↔ ∀𝑦 ∈ 𝑆 ((1st ‘𝑧)𝐹𝑦) ∈ 𝑆)) |
53 | 6 | ralrimivva 2552 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝐶)∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝑆) |
54 | 53 | ad2antrr 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ∀𝑥 ∈ (ℤ≥‘𝐶)∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝑆) |
55 | 52, 54, 43 | rspcdva 2839 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ∀𝑦 ∈ 𝑆 ((1st ‘𝑧)𝐹𝑦) ∈ 𝑆) |
56 | 49, 55, 45 | rspcdva 2839 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((1st ‘𝑧)𝐹(2nd ‘𝑧)) ∈ 𝑆) |
57 | | opelxp 4641 |
. . . . . . . . . . . . 13
⊢
(〈((1st ‘𝑧) + 1), ((1st ‘𝑧)𝐹(2nd ‘𝑧))〉 ∈
((ℤ≥‘𝐶) × 𝑆) ↔ (((1st ‘𝑧) + 1) ∈
(ℤ≥‘𝐶) ∧ ((1st ‘𝑧)𝐹(2nd ‘𝑧)) ∈ 𝑆)) |
58 | 47, 56, 57 | sylanbrc 415 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹(2nd ‘𝑧))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) |
59 | | oveq1 5860 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (1st ‘𝑧) → (𝑥 + 1) = ((1st ‘𝑧) + 1)) |
60 | 59, 50 | opeq12d 3773 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘𝑧) → 〈(𝑥 + 1), (𝑥𝐹𝑦)〉 = 〈((1st ‘𝑧) + 1), ((1st
‘𝑧)𝐹𝑦)〉) |
61 | 48 | opeq2d 3772 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (2nd ‘𝑧) → 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹𝑦)〉 = 〈((1st ‘𝑧) + 1), ((1st
‘𝑧)𝐹(2nd ‘𝑧))〉) |
62 | | eqid 2170 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉) = (𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉) |
63 | 60, 61, 62 | ovmpog 5987 |
. . . . . . . . . . . 12
⊢
(((1st ‘𝑧) ∈ (ℤ≥‘𝐶) ∧ (2nd
‘𝑧) ∈ 𝑆 ∧ 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹(2nd ‘𝑧))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) → ((1st ‘𝑧)(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘𝑧)) = 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹(2nd ‘𝑧))〉) |
64 | 43, 45, 58, 63 | syl3anc 1233 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((1st ‘𝑧)(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘𝑧)) = 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹(2nd ‘𝑧))〉) |
65 | 41, 64 | eqtr3id 2217 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(1st
‘𝑧), (2nd
‘𝑧)〉) =
〈((1st ‘𝑧) + 1), ((1st ‘𝑧)𝐹(2nd ‘𝑧))〉) |
66 | 65, 58 | eqeltrd 2247 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(1st
‘𝑧), (2nd
‘𝑧)〉) ∈
((ℤ≥‘𝐶) × 𝑆)) |
67 | 40, 66 | eqeltrd 2247 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) ∈ ((ℤ≥‘𝐶) × 𝑆)) |
68 | 67 | ralrimiva 2543 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ∀𝑧 ∈
((ℤ≥‘𝐶) × 𝑆)((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) ∈ ((ℤ≥‘𝐶) × 𝑆)) |
69 | | uzid 9501 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
(ℤ≥‘𝐶)) |
70 | 2, 69 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 𝐶 ∈ (ℤ≥‘𝐶)) |
71 | | opelxp 4641 |
. . . . . . . 8
⊢
(〈𝐶, 𝐴〉 ∈
((ℤ≥‘𝐶) × 𝑆) ↔ (𝐶 ∈ (ℤ≥‘𝐶) ∧ 𝐴 ∈ 𝑆)) |
72 | 70, 5, 71 | sylanbrc 415 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 〈𝐶, 𝐴〉 ∈
((ℤ≥‘𝐶) × 𝑆)) |
73 | | frecsuc 6386 |
. . . . . . 7
⊢
((∀𝑧 ∈
((ℤ≥‘𝐶) × 𝑆)((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) ∈ ((ℤ≥‘𝐶) × 𝑆) ∧ 〈𝐶, 𝐴〉 ∈
((ℤ≥‘𝐶) × 𝑆) ∧ (◡𝐺‘𝐵) ∈ ω) → (frec((𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘suc (◡𝐺‘𝐵)) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘(◡𝐺‘𝐵)))) |
74 | 68, 72, 24, 73 | syl3anc 1233 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (frec((𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘suc (◡𝐺‘𝐵)) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘(◡𝐺‘𝐵)))) |
75 | 8 | fveq1i 5497 |
. . . . . 6
⊢ (𝑅‘suc (◡𝐺‘𝐵)) = (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘suc (◡𝐺‘𝐵)) |
76 | 8 | fveq1i 5497 |
. . . . . . 7
⊢ (𝑅‘(◡𝐺‘𝐵)) = (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘(◡𝐺‘𝐵)) |
77 | 76 | fveq2i 5499 |
. . . . . 6
⊢ ((𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(𝑅‘(◡𝐺‘𝐵))) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘(◡𝐺‘𝐵))) |
78 | 74, 75, 77 | 3eqtr4g 2228 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘suc (◡𝐺‘𝐵)) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(𝑅‘(◡𝐺‘𝐵)))) |
79 | 2, 3, 5, 7, 8, 24 | frec2uzrdg 10365 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝐵)) = 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
80 | 79 | fveq2d 5500 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(𝑅‘(◡𝐺‘𝐵))) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉)) |
81 | | df-ov 5856 |
. . . . . 6
⊢ ((𝐺‘(◡𝐺‘𝐵))(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
82 | 80, 81 | eqtr4di 2221 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(𝑅‘(◡𝐺‘𝐵))) = ((𝐺‘(◡𝐺‘𝐵))(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
83 | 2, 3, 24 | frec2uzuzd 10358 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐺‘(◡𝐺‘𝐵)) ∈
(ℤ≥‘𝐶)) |
84 | 2, 3, 5, 7, 8 | frecuzrdgrrn 10364 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ (◡𝐺‘𝐵) ∈ ω) → (𝑅‘(◡𝐺‘𝐵)) ∈
((ℤ≥‘𝐶) × 𝑆)) |
85 | 24, 84 | mpdan 419 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝐵)) ∈
((ℤ≥‘𝐶) × 𝑆)) |
86 | | xp2nd 6145 |
. . . . . . 7
⊢ ((𝑅‘(◡𝐺‘𝐵)) ∈
((ℤ≥‘𝐶) × 𝑆) → (2nd ‘(𝑅‘(◡𝐺‘𝐵))) ∈ 𝑆) |
87 | 85, 86 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘(◡𝐺‘𝐵))) ∈ 𝑆) |
88 | 28, 10 | eqeltrd 2247 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ((𝐺‘(◡𝐺‘𝐵)) + 1) ∈
(ℤ≥‘𝐶)) |
89 | 7 | caovclg 6005 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) ∧ (𝑧 ∈ (ℤ≥‘𝐶) ∧ 𝑤 ∈ 𝑆)) → (𝑧𝐹𝑤) ∈ 𝑆) |
90 | 89, 83, 87 | caovcld 6006 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) ∈ 𝑆) |
91 | | opelxp 4641 |
. . . . . . 7
⊢
(〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉 ∈
((ℤ≥‘𝐶) × 𝑆) ↔ (((𝐺‘(◡𝐺‘𝐵)) + 1) ∈
(ℤ≥‘𝐶) ∧ ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) ∈ 𝑆)) |
92 | 88, 90, 91 | sylanbrc 415 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) |
93 | | oveq1 5860 |
. . . . . . . 8
⊢ (𝑧 = (𝐺‘(◡𝐺‘𝐵)) → (𝑧 + 1) = ((𝐺‘(◡𝐺‘𝐵)) + 1)) |
94 | | oveq1 5860 |
. . . . . . . 8
⊢ (𝑧 = (𝐺‘(◡𝐺‘𝐵)) → (𝑧𝐹𝑤) = ((𝐺‘(◡𝐺‘𝐵))𝐹𝑤)) |
95 | 93, 94 | opeq12d 3773 |
. . . . . . 7
⊢ (𝑧 = (𝐺‘(◡𝐺‘𝐵)) → 〈(𝑧 + 1), (𝑧𝐹𝑤)〉 = 〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹𝑤)〉) |
96 | | oveq2 5861 |
. . . . . . . 8
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝐵))) → ((𝐺‘(◡𝐺‘𝐵))𝐹𝑤) = ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
97 | 96 | opeq2d 3772 |
. . . . . . 7
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝐵))) → 〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹𝑤)〉 = 〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) |
98 | | oveq1 5860 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1)) |
99 | | oveq1 5860 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥𝐹𝑦) = (𝑧𝐹𝑦)) |
100 | 98, 99 | opeq12d 3773 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → 〈(𝑥 + 1), (𝑥𝐹𝑦)〉 = 〈(𝑧 + 1), (𝑧𝐹𝑦)〉) |
101 | | oveq2 5861 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝑧𝐹𝑦) = (𝑧𝐹𝑤)) |
102 | 101 | opeq2d 3772 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → 〈(𝑧 + 1), (𝑧𝐹𝑦)〉 = 〈(𝑧 + 1), (𝑧𝐹𝑤)〉) |
103 | 100, 102 | cbvmpov 5933 |
. . . . . . 7
⊢ (𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉) = (𝑧 ∈ (ℤ≥‘𝐶), 𝑤 ∈ 𝑆 ↦ 〈(𝑧 + 1), (𝑧𝐹𝑤)〉) |
104 | 95, 97, 103 | ovmpog 5987 |
. . . . . 6
⊢ (((𝐺‘(◡𝐺‘𝐵)) ∈
(ℤ≥‘𝐶) ∧ (2nd ‘(𝑅‘(◡𝐺‘𝐵))) ∈ 𝑆 ∧ 〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) → ((𝐺‘(◡𝐺‘𝐵))(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) = 〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) |
105 | 83, 87, 92, 104 | syl3anc 1233 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ((𝐺‘(◡𝐺‘𝐵))(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) = 〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) |
106 | 78, 82, 105 | 3eqtrd 2207 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑅‘suc (◡𝐺‘𝐵)) = 〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) |
107 | 106 | fveq2d 5500 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘suc (◡𝐺‘𝐵))) = (2nd ‘〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉)) |
108 | | op2ndg 6130 |
. . . 4
⊢ ((((𝐺‘(◡𝐺‘𝐵)) + 1) ∈
(ℤ≥‘𝐶) ∧ ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) ∈ 𝑆) → (2nd
‘〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) = ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
109 | 88, 90, 108 | syl2anc 409 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (2nd
‘〈((𝐺‘(◡𝐺‘𝐵)) + 1), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) = ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
110 | 107, 109 | eqtrd 2203 |
. 2
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘suc (◡𝐺‘𝐵))) = ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
111 | | simpr 109 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 𝐵 ∈ (ℤ≥‘𝐶)) |
112 | 2, 3, 5, 7, 8, 111 | frecuzrdglem 10367 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) |
113 | 112, 13 | eleqtrrd 2250 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ 𝑇) |
114 | | funopfv 5536 |
. . . . . . 7
⊢ (Fun
𝑇 → (〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ 𝑇 → (𝑇‘𝐵) = (2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
115 | 17, 114 | syl 14 |
. . . . . 6
⊢ (𝜑 → (〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ 𝑇 → (𝑇‘𝐵) = (2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
116 | 115 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ 𝑇 → (𝑇‘𝐵) = (2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
117 | 113, 116 | mpd 13 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑇‘𝐵) = (2nd ‘(𝑅‘(◡𝐺‘𝐵)))) |
118 | 117 | eqcomd 2176 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘(◡𝐺‘𝐵))) = (𝑇‘𝐵)) |
119 | 27, 118 | oveq12d 5871 |
. 2
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) = (𝐵𝐹(𝑇‘𝐵))) |
120 | 37, 110, 119 | 3eqtrd 2207 |
1
⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑇‘(𝐵 + 1)) = (𝐵𝐹(𝑇‘𝐵))) |