ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgsuc GIF version

Theorem frecuzrdgsuc 9710
Description: Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 9695 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 28-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frecuzrdgrrn.a (𝜑𝐴𝑆)
frecuzrdgrrn.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrrn.2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgtcl.3 (𝜑𝑇 = ran 𝑅)
Assertion
Ref Expression
frecuzrdgsuc ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇‘(𝐵 + 1)) = (𝐵𝐹(𝑇𝐵)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem frecuzrdgsuc
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . . . . . . 7 (𝜑𝐶 ∈ ℤ)
21adantr 270 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐶 ∈ ℤ)
3 frec2uz.2 . . . . . 6 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
4 frecuzrdgrrn.a . . . . . . 7 (𝜑𝐴𝑆)
54adantr 270 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐴𝑆)
6 frecuzrdgrrn.f . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
76adantlr 461 . . . . . 6 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
8 frecuzrdgrrn.2 . . . . . 6 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
9 peano2uz 8966 . . . . . . 7 (𝐵 ∈ (ℤ𝐶) → (𝐵 + 1) ∈ (ℤ𝐶))
109adantl 271 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐵 + 1) ∈ (ℤ𝐶))
112, 3, 5, 7, 8, 10frecuzrdglem 9707 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ ran 𝑅)
12 frecuzrdgtcl.3 . . . . . 6 (𝜑𝑇 = ran 𝑅)
1312adantr 270 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝑇 = ran 𝑅)
1411, 13eleqtrrd 2162 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ 𝑇)
151, 3, 4, 6, 8, 12frecuzrdgtcl 9708 . . . . . . 7 (𝜑𝑇:(ℤ𝐶)⟶𝑆)
16 ffun 5117 . . . . . . 7 (𝑇:(ℤ𝐶)⟶𝑆 → Fun 𝑇)
1715, 16syl 14 . . . . . 6 (𝜑 → Fun 𝑇)
18 funopfv 5289 . . . . . 6 (Fun 𝑇 → (⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ 𝑇 → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))))
1917, 18syl 14 . . . . 5 (𝜑 → (⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ 𝑇 → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))))
2019adantr 270 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ 𝑇 → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))))
2114, 20mpd 13 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1)))))
221, 3frec2uzf1od 9702 . . . . . . . . 9 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
23 f1ocnvdm 5500 . . . . . . . . 9 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ ω)
2422, 23sylan 277 . . . . . . . 8 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ ω)
252, 3, 24frec2uzsucd 9697 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘suc (𝐺𝐵)) = ((𝐺‘(𝐺𝐵)) + 1))
26 f1ocnvfv2 5497 . . . . . . . . 9 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) = 𝐵)
2722, 26sylan 277 . . . . . . . 8 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) = 𝐵)
2827oveq1d 5606 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘(𝐺𝐵)) + 1) = (𝐵 + 1))
2925, 28eqtrd 2115 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘suc (𝐺𝐵)) = (𝐵 + 1))
30 peano2 4373 . . . . . . . 8 ((𝐺𝐵) ∈ ω → suc (𝐺𝐵) ∈ ω)
3124, 30syl 14 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → suc (𝐺𝐵) ∈ ω)
32 f1ocnvfv 5498 . . . . . . 7 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ suc (𝐺𝐵) ∈ ω) → ((𝐺‘suc (𝐺𝐵)) = (𝐵 + 1) → (𝐺‘(𝐵 + 1)) = suc (𝐺𝐵)))
3322, 31, 32syl2an2r 560 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘suc (𝐺𝐵)) = (𝐵 + 1) → (𝐺‘(𝐵 + 1)) = suc (𝐺𝐵)))
3429, 33mpd 13 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐵 + 1)) = suc (𝐺𝐵))
3534fveq2d 5257 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺‘(𝐵 + 1))) = (𝑅‘suc (𝐺𝐵)))
3635fveq2d 5257 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1)))) = (2nd ‘(𝑅‘suc (𝐺𝐵))))
3721, 36eqtrd 2115 . 2 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘suc (𝐺𝐵))))
38 1st2nd2 5880 . . . . . . . . . . 11 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
3938adantl 271 . . . . . . . . . 10 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
4039fveq2d 5257 . . . . . . . . 9 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩))
41 df-ov 5594 . . . . . . . . . . 11 ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩)
42 xp1st 5871 . . . . . . . . . . . . 13 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → (1st𝑧) ∈ (ℤ𝐶))
4342adantl 271 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (1st𝑧) ∈ (ℤ𝐶))
44 xp2nd 5872 . . . . . . . . . . . . 13 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → (2nd𝑧) ∈ 𝑆)
4544adantl 271 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (2nd𝑧) ∈ 𝑆)
46 peano2uz 8966 . . . . . . . . . . . . . 14 ((1st𝑧) ∈ (ℤ𝐶) → ((1st𝑧) + 1) ∈ (ℤ𝐶))
4743, 46syl 14 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧) + 1) ∈ (ℤ𝐶))
48 oveq2 5599 . . . . . . . . . . . . . . 15 (𝑦 = (2nd𝑧) → ((1st𝑧)𝐹𝑦) = ((1st𝑧)𝐹(2nd𝑧)))
4948eleq1d 2151 . . . . . . . . . . . . . 14 (𝑦 = (2nd𝑧) → (((1st𝑧)𝐹𝑦) ∈ 𝑆 ↔ ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆))
50 oveq1 5598 . . . . . . . . . . . . . . . . 17 (𝑥 = (1st𝑧) → (𝑥𝐹𝑦) = ((1st𝑧)𝐹𝑦))
5150eleq1d 2151 . . . . . . . . . . . . . . . 16 (𝑥 = (1st𝑧) → ((𝑥𝐹𝑦) ∈ 𝑆 ↔ ((1st𝑧)𝐹𝑦) ∈ 𝑆))
5251ralbidv 2374 . . . . . . . . . . . . . . 15 (𝑥 = (1st𝑧) → (∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((1st𝑧)𝐹𝑦) ∈ 𝑆))
536ralrimivva 2449 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆)
5453ad2antrr 472 . . . . . . . . . . . . . . 15 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆)
5552, 54, 43rspcdva 2717 . . . . . . . . . . . . . 14 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ∀𝑦𝑆 ((1st𝑧)𝐹𝑦) ∈ 𝑆)
5649, 55, 45rspcdva 2717 . . . . . . . . . . . . 13 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆)
57 opelxp 4430 . . . . . . . . . . . . 13 (⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆) ↔ (((1st𝑧) + 1) ∈ (ℤ𝐶) ∧ ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆))
5847, 56, 57sylanbrc 408 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆))
59 oveq1 5598 . . . . . . . . . . . . . 14 (𝑥 = (1st𝑧) → (𝑥 + 1) = ((1st𝑧) + 1))
6059, 50opeq12d 3604 . . . . . . . . . . . . 13 (𝑥 = (1st𝑧) → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹𝑦)⟩)
6148opeq2d 3603 . . . . . . . . . . . . 13 (𝑦 = (2nd𝑧) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹𝑦)⟩ = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
62 eqid 2083 . . . . . . . . . . . . 13 (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)
6360, 61, 62ovmpt2g 5714 . . . . . . . . . . . 12 (((1st𝑧) ∈ (ℤ𝐶) ∧ (2nd𝑧) ∈ 𝑆 ∧ ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
6443, 45, 58, 63syl3anc 1170 . . . . . . . . . . 11 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
6541, 64syl5eqr 2129 . . . . . . . . . 10 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
6665, 58eqeltrd 2159 . . . . . . . . 9 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩) ∈ ((ℤ𝐶) × 𝑆))
6740, 66eqeltrd 2159 . . . . . . . 8 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆))
6867ralrimiva 2440 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ∀𝑧 ∈ ((ℤ𝐶) × 𝑆)((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆))
69 uzid 8928 . . . . . . . . 9 (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ𝐶))
702, 69syl 14 . . . . . . . 8 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐶 ∈ (ℤ𝐶))
71 opelxp 4430 . . . . . . . 8 (⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆) ↔ (𝐶 ∈ (ℤ𝐶) ∧ 𝐴𝑆))
7270, 5, 71sylanbrc 408 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆))
73 frecsuc 6104 . . . . . . 7 ((∀𝑧 ∈ ((ℤ𝐶) × 𝑆)((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆) ∧ ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆) ∧ (𝐺𝐵) ∈ ω) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))))
7468, 72, 24, 73syl3anc 1170 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))))
758fveq1i 5254 . . . . . 6 (𝑅‘suc (𝐺𝐵)) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵))
768fveq1i 5254 . . . . . . 7 (𝑅‘(𝐺𝐵)) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))
7776fveq2i 5256 . . . . . 6 ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵)))
7874, 75, 773eqtr4g 2140 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))))
792, 3, 5, 7, 8, 24frec2uzrdg 9705 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) = ⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
8079fveq2d 5257 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩))
81 df-ov 5594 . . . . . 6 ((𝐺‘(𝐺𝐵))(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
8280, 81syl6eqr 2133 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝐺‘(𝐺𝐵))(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))))
832, 3, 24frec2uzuzd 9698 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) ∈ (ℤ𝐶))
842, 3, 5, 7, 8frecuzrdgrrn 9704 . . . . . . . 8 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ (𝐺𝐵) ∈ ω) → (𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆))
8524, 84mpdan 412 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆))
86 xp2nd 5872 . . . . . . 7 ((𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑆)
8785, 86syl 14 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑆)
8828, 10eqeltrd 2159 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘(𝐺𝐵)) + 1) ∈ (ℤ𝐶))
897caovclg 5732 . . . . . . . 8 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ (𝑧 ∈ (ℤ𝐶) ∧ 𝑤𝑆)) → (𝑧𝐹𝑤) ∈ 𝑆)
9089, 83, 87caovcld 5733 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ 𝑆)
91 opelxp 4430 . . . . . . 7 (⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ ((ℤ𝐶) × 𝑆) ↔ (((𝐺‘(𝐺𝐵)) + 1) ∈ (ℤ𝐶) ∧ ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ 𝑆))
9288, 90, 91sylanbrc 408 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ ((ℤ𝐶) × 𝑆))
93 oveq1 5598 . . . . . . . 8 (𝑧 = (𝐺‘(𝐺𝐵)) → (𝑧 + 1) = ((𝐺‘(𝐺𝐵)) + 1))
94 oveq1 5598 . . . . . . . 8 (𝑧 = (𝐺‘(𝐺𝐵)) → (𝑧𝐹𝑤) = ((𝐺‘(𝐺𝐵))𝐹𝑤))
9593, 94opeq12d 3604 . . . . . . 7 (𝑧 = (𝐺‘(𝐺𝐵)) → ⟨(𝑧 + 1), (𝑧𝐹𝑤)⟩ = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹𝑤)⟩)
96 oveq2 5599 . . . . . . . 8 (𝑤 = (2nd ‘(𝑅‘(𝐺𝐵))) → ((𝐺‘(𝐺𝐵))𝐹𝑤) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
9796opeq2d 3603 . . . . . . 7 (𝑤 = (2nd ‘(𝑅‘(𝐺𝐵))) → ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹𝑤)⟩ = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
98 oveq1 5598 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1))
99 oveq1 5598 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥𝐹𝑦) = (𝑧𝐹𝑦))
10098, 99opeq12d 3604 . . . . . . . 8 (𝑥 = 𝑧 → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨(𝑧 + 1), (𝑧𝐹𝑦)⟩)
101 oveq2 5599 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑧𝐹𝑦) = (𝑧𝐹𝑤))
102101opeq2d 3603 . . . . . . . 8 (𝑦 = 𝑤 → ⟨(𝑧 + 1), (𝑧𝐹𝑦)⟩ = ⟨(𝑧 + 1), (𝑧𝐹𝑤)⟩)
103100, 102cbvmpt2v 5663 . . . . . . 7 (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑧 ∈ (ℤ𝐶), 𝑤𝑆 ↦ ⟨(𝑧 + 1), (𝑧𝐹𝑤)⟩)
10495, 97, 103ovmpt2g 5714 . . . . . 6 (((𝐺‘(𝐺𝐵)) ∈ (ℤ𝐶) ∧ (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑆 ∧ ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ ((ℤ𝐶) × 𝑆)) → ((𝐺‘(𝐺𝐵))(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
10583, 87, 92, 104syl3anc 1170 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘(𝐺𝐵))(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
10678, 82, 1053eqtrd 2119 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
107106fveq2d 5257 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘suc (𝐺𝐵))) = (2nd ‘⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩))
108 op2ndg 5857 . . . 4 ((((𝐺‘(𝐺𝐵)) + 1) ∈ (ℤ𝐶) ∧ ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ 𝑆) → (2nd ‘⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
10988, 90, 108syl2anc 403 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
110107, 109eqtrd 2115 . 2 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘suc (𝐺𝐵))) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
111 simpr 108 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐵 ∈ (ℤ𝐶))
1122, 3, 5, 7, 8, 111frecuzrdglem 9707 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ ran 𝑅)
113112, 13eleqtrrd 2162 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑇)
114 funopfv 5289 . . . . . . 7 (Fun 𝑇 → (⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑇 → (𝑇𝐵) = (2nd ‘(𝑅‘(𝐺𝐵)))))
11517, 114syl 14 . . . . . 6 (𝜑 → (⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑇 → (𝑇𝐵) = (2nd ‘(𝑅‘(𝐺𝐵)))))
116115adantr 270 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑇 → (𝑇𝐵) = (2nd ‘(𝑅‘(𝐺𝐵)))))
117113, 116mpd 13 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇𝐵) = (2nd ‘(𝑅‘(𝐺𝐵))))
118117eqcomd 2088 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝐵))) = (𝑇𝐵))
11927, 118oveq12d 5609 . 2 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) = (𝐵𝐹(𝑇𝐵)))
12037, 110, 1193eqtrd 2119 1 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇‘(𝐵 + 1)) = (𝐵𝐹(𝑇𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  wral 2353  cop 3425  cmpt 3865  suc csuc 4156  ωcom 4368   × cxp 4399  ccnv 4400  ran crn 4402  Fun wfun 4963  wf 4965  1-1-ontowf1o 4968  cfv 4969  (class class class)co 5591  cmpt2 5593  1st c1st 5844  2nd c2nd 5845  freccfrec 6087  1c1 7254   + caddc 7256  cz 8646  cuz 8914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-addcom 7348  ax-addass 7350  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-0id 7356  ax-rnegex 7357  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-ltadd 7364
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-iord 4157  df-on 4159  df-ilim 4160  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-frec 6088  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-inn 8317  df-n0 8566  df-z 8647  df-uz 8915
This theorem is referenced by:  iseqp1  9757
  Copyright terms: Public domain W3C validator