ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzrdg GIF version

Theorem frec2uzrdg 10194
Description: A helper lemma for the value of a recursive definition generator on upper integers (typically either or 0) with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. This lemma shows that evaluating 𝑅 at an element of ω gives an ordered pair whose first element is the index (translated from ω to (ℤ𝐶)). See comment in frec2uz0d 10184 which describes 𝐺 and the index translation. (Contributed by Jim Kingdon, 24-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frecuzrdgrrn.a (𝜑𝐴𝑆)
frecuzrdgrrn.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrrn.2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frec2uzrdg.b (𝜑𝐵 ∈ ω)
Assertion
Ref Expression
frec2uzrdg (𝜑 → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem frec2uzrdg
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uzrdg.b . 2 (𝜑𝐵 ∈ ω)
2 fveq2 5421 . . . . 5 (𝑧 = 𝐵 → (𝑅𝑧) = (𝑅𝐵))
3 fveq2 5421 . . . . . 6 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
42fveq2d 5425 . . . . . 6 (𝑧 = 𝐵 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝐵)))
53, 4opeq12d 3713 . . . . 5 (𝑧 = 𝐵 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
62, 5eqeq12d 2154 . . . 4 (𝑧 = 𝐵 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩))
76imbi2d 229 . . 3 (𝑧 = 𝐵 → ((𝜑 → (𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩) ↔ (𝜑 → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)))
8 fveq2 5421 . . . . 5 (𝑧 = ∅ → (𝑅𝑧) = (𝑅‘∅))
9 fveq2 5421 . . . . . 6 (𝑧 = ∅ → (𝐺𝑧) = (𝐺‘∅))
108fveq2d 5425 . . . . . 6 (𝑧 = ∅ → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘∅)))
119, 10opeq12d 3713 . . . . 5 (𝑧 = ∅ → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩)
128, 11eqeq12d 2154 . . . 4 (𝑧 = ∅ → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩))
13 fveq2 5421 . . . . 5 (𝑧 = 𝑣 → (𝑅𝑧) = (𝑅𝑣))
14 fveq2 5421 . . . . . 6 (𝑧 = 𝑣 → (𝐺𝑧) = (𝐺𝑣))
1513fveq2d 5425 . . . . . 6 (𝑧 = 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝑣)))
1614, 15opeq12d 3713 . . . . 5 (𝑧 = 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
1713, 16eqeq12d 2154 . . . 4 (𝑧 = 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
18 fveq2 5421 . . . . 5 (𝑧 = suc 𝑣 → (𝑅𝑧) = (𝑅‘suc 𝑣))
19 fveq2 5421 . . . . . 6 (𝑧 = suc 𝑣 → (𝐺𝑧) = (𝐺‘suc 𝑣))
2018fveq2d 5425 . . . . . 6 (𝑧 = suc 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘suc 𝑣)))
2119, 20opeq12d 3713 . . . . 5 (𝑧 = suc 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
2218, 21eqeq12d 2154 . . . 4 (𝑧 = suc 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩))
23 frecuzrdgrrn.2 . . . . . . 7 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
2423fveq1i 5422 . . . . . 6 (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅)
25 frec2uz.1 . . . . . . . 8 (𝜑𝐶 ∈ ℤ)
26 frecuzrdgrrn.a . . . . . . . 8 (𝜑𝐴𝑆)
27 opexg 4150 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝐴𝑆) → ⟨𝐶, 𝐴⟩ ∈ V)
2825, 26, 27syl2anc 408 . . . . . . 7 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ V)
29 frec0g 6294 . . . . . . 7 (⟨𝐶, 𝐴⟩ ∈ V → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) = ⟨𝐶, 𝐴⟩)
3028, 29syl 14 . . . . . 6 (𝜑 → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) = ⟨𝐶, 𝐴⟩)
3124, 30syl5eq 2184 . . . . 5 (𝜑 → (𝑅‘∅) = ⟨𝐶, 𝐴⟩)
32 frec2uz.2 . . . . . . 7 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
3325, 32frec2uz0d 10184 . . . . . 6 (𝜑 → (𝐺‘∅) = 𝐶)
3431fveq2d 5425 . . . . . . 7 (𝜑 → (2nd ‘(𝑅‘∅)) = (2nd ‘⟨𝐶, 𝐴⟩))
35 uzid 9352 . . . . . . . . 9 (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ𝐶))
3625, 35syl 14 . . . . . . . 8 (𝜑𝐶 ∈ (ℤ𝐶))
37 op2ndg 6049 . . . . . . . 8 ((𝐶 ∈ (ℤ𝐶) ∧ 𝐴𝑆) → (2nd ‘⟨𝐶, 𝐴⟩) = 𝐴)
3836, 26, 37syl2anc 408 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐶, 𝐴⟩) = 𝐴)
3934, 38eqtrd 2172 . . . . . 6 (𝜑 → (2nd ‘(𝑅‘∅)) = 𝐴)
4033, 39opeq12d 3713 . . . . 5 (𝜑 → ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩ = ⟨𝐶, 𝐴⟩)
4131, 40eqtr4d 2175 . . . 4 (𝜑 → (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩)
42 1st2nd2 6073 . . . . . . . . . . . . . . 15 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
4342adantl 275 . . . . . . . . . . . . . 14 (((𝜑𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
4443fveq2d 5425 . . . . . . . . . . . . 13 (((𝜑𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩))
45 df-ov 5777 . . . . . . . . . . . . . . 15 ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩)
46 xp1st 6063 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → (1st𝑧) ∈ (ℤ𝐶))
4746adantl 275 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (1st𝑧) ∈ (ℤ𝐶))
48 xp2nd 6064 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → (2nd𝑧) ∈ 𝑆)
4948adantl 275 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (2nd𝑧) ∈ 𝑆)
50 peano2uz 9390 . . . . . . . . . . . . . . . . . 18 ((1st𝑧) ∈ (ℤ𝐶) → ((1st𝑧) + 1) ∈ (ℤ𝐶))
5147, 50syl 14 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧) + 1) ∈ (ℤ𝐶))
52 frecuzrdgrrn.f . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5352ralrimivva 2514 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆)
5453ad2antrr 479 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆)
55 oveq1 5781 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (1st𝑧) → (𝑥𝐹𝑦) = ((1st𝑧)𝐹𝑦))
5655eleq1d 2208 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (1st𝑧) → ((𝑥𝐹𝑦) ∈ 𝑆 ↔ ((1st𝑧)𝐹𝑦) ∈ 𝑆))
57 oveq2 5782 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (2nd𝑧) → ((1st𝑧)𝐹𝑦) = ((1st𝑧)𝐹(2nd𝑧)))
5857eleq1d 2208 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (2nd𝑧) → (((1st𝑧)𝐹𝑦) ∈ 𝑆 ↔ ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆))
5956, 58rspc2v 2802 . . . . . . . . . . . . . . . . . . 19 (((1st𝑧) ∈ (ℤ𝐶) ∧ (2nd𝑧) ∈ 𝑆) → (∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆 → ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆))
6047, 49, 59syl2anc 408 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆 → ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆))
6154, 60mpd 13 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆)
62 opelxp 4569 . . . . . . . . . . . . . . . . 17 (⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆) ↔ (((1st𝑧) + 1) ∈ (ℤ𝐶) ∧ ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆))
6351, 61, 62sylanbrc 413 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆))
64 oveq1 5781 . . . . . . . . . . . . . . . . . 18 (𝑥 = (1st𝑧) → (𝑥 + 1) = ((1st𝑧) + 1))
6564, 55opeq12d 3713 . . . . . . . . . . . . . . . . 17 (𝑥 = (1st𝑧) → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹𝑦)⟩)
6657opeq2d 3712 . . . . . . . . . . . . . . . . 17 (𝑦 = (2nd𝑧) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹𝑦)⟩ = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
67 eqid 2139 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)
6865, 66, 67ovmpog 5905 . . . . . . . . . . . . . . . 16 (((1st𝑧) ∈ (ℤ𝐶) ∧ (2nd𝑧) ∈ 𝑆 ∧ ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
6947, 49, 63, 68syl3anc 1216 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
7045, 69syl5eqr 2186 . . . . . . . . . . . . . 14 (((𝜑𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
7170, 63eqeltrd 2216 . . . . . . . . . . . . 13 (((𝜑𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩) ∈ ((ℤ𝐶) × 𝑆))
7244, 71eqeltrd 2216 . . . . . . . . . . . 12 (((𝜑𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆))
7372ralrimiva 2505 . . . . . . . . . . 11 ((𝜑𝑣 ∈ ω) → ∀𝑧 ∈ ((ℤ𝐶) × 𝑆)((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆))
7436adantr 274 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ ω) → 𝐶 ∈ (ℤ𝐶))
7526adantr 274 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ ω) → 𝐴𝑆)
76 opelxp 4569 . . . . . . . . . . . 12 (⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆) ↔ (𝐶 ∈ (ℤ𝐶) ∧ 𝐴𝑆))
7774, 75, 76sylanbrc 413 . . . . . . . . . . 11 ((𝜑𝑣 ∈ ω) → ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆))
78 simpr 109 . . . . . . . . . . 11 ((𝜑𝑣 ∈ ω) → 𝑣 ∈ ω)
79 frecsuc 6304 . . . . . . . . . . 11 ((∀𝑧 ∈ ((ℤ𝐶) × 𝑆)((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆) ∧ ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆) ∧ 𝑣 ∈ ω) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc 𝑣) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘𝑣)))
8073, 77, 78, 79syl3anc 1216 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc 𝑣) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘𝑣)))
8123fveq1i 5422 . . . . . . . . . 10 (𝑅‘suc 𝑣) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc 𝑣)
8223fveq1i 5422 . . . . . . . . . . 11 (𝑅𝑣) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘𝑣)
8382fveq2i 5424 . . . . . . . . . 10 ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘𝑣))
8480, 81, 833eqtr4g 2197 . . . . . . . . 9 ((𝜑𝑣 ∈ ω) → (𝑅‘suc 𝑣) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)))
8584adantr 274 . . . . . . . 8 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝑅‘suc 𝑣) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)))
86 fveq2 5421 . . . . . . . . 9 ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
87 df-ov 5777 . . . . . . . . . 10 ((𝐺𝑣)(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
8825adantr 274 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ ω) → 𝐶 ∈ ℤ)
8988, 32, 78frec2uzuzd 10187 . . . . . . . . . . 11 ((𝜑𝑣 ∈ ω) → (𝐺𝑣) ∈ (ℤ𝐶))
9025, 32, 26, 52, 23frecuzrdgrrn 10193 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ ω) → (𝑅𝑣) ∈ ((ℤ𝐶) × 𝑆))
91 xp2nd 6064 . . . . . . . . . . . 12 ((𝑅𝑣) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅𝑣)) ∈ 𝑆)
9290, 91syl 14 . . . . . . . . . . 11 ((𝜑𝑣 ∈ ω) → (2nd ‘(𝑅𝑣)) ∈ 𝑆)
93 peano2uz 9390 . . . . . . . . . . . . 13 ((𝐺𝑣) ∈ (ℤ𝐶) → ((𝐺𝑣) + 1) ∈ (ℤ𝐶))
9489, 93syl 14 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ ω) → ((𝐺𝑣) + 1) ∈ (ℤ𝐶))
9552caovclg 5923 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (ℤ𝐶) ∧ 𝑤𝑆)) → (𝑧𝐹𝑤) ∈ 𝑆)
9695adantlr 468 . . . . . . . . . . . . 13 (((𝜑𝑣 ∈ ω) ∧ (𝑧 ∈ (ℤ𝐶) ∧ 𝑤𝑆)) → (𝑧𝐹𝑤) ∈ 𝑆)
9796, 89, 92caovcld 5924 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ ω) → ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))) ∈ 𝑆)
98 opelxp 4569 . . . . . . . . . . . 12 (⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩ ∈ ((ℤ𝐶) × 𝑆) ↔ (((𝐺𝑣) + 1) ∈ (ℤ𝐶) ∧ ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))) ∈ 𝑆))
9994, 97, 98sylanbrc 413 . . . . . . . . . . 11 ((𝜑𝑣 ∈ ω) → ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩ ∈ ((ℤ𝐶) × 𝑆))
100 oveq1 5781 . . . . . . . . . . . . 13 (𝑤 = (𝐺𝑣) → (𝑤 + 1) = ((𝐺𝑣) + 1))
101 oveq1 5781 . . . . . . . . . . . . 13 (𝑤 = (𝐺𝑣) → (𝑤𝐹𝑧) = ((𝐺𝑣)𝐹𝑧))
102100, 101opeq12d 3713 . . . . . . . . . . . 12 (𝑤 = (𝐺𝑣) → ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹𝑧)⟩)
103 oveq2 5782 . . . . . . . . . . . . 13 (𝑧 = (2nd ‘(𝑅𝑣)) → ((𝐺𝑣)𝐹𝑧) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
104103opeq2d 3712 . . . . . . . . . . . 12 (𝑧 = (2nd ‘(𝑅𝑣)) → ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹𝑧)⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
105 oveq1 5781 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝑥 + 1) = (𝑤 + 1))
106 oveq1 5781 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝑥𝐹𝑦) = (𝑤𝐹𝑦))
107105, 106opeq12d 3713 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨(𝑤 + 1), (𝑤𝐹𝑦)⟩)
108 oveq2 5782 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑤𝐹𝑦) = (𝑤𝐹𝑧))
109108opeq2d 3712 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ⟨(𝑤 + 1), (𝑤𝐹𝑦)⟩ = ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩)
110107, 109cbvmpov 5851 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑤 ∈ (ℤ𝐶), 𝑧𝑆 ↦ ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩)
111102, 104, 110ovmpog 5905 . . . . . . . . . . 11 (((𝐺𝑣) ∈ (ℤ𝐶) ∧ (2nd ‘(𝑅𝑣)) ∈ 𝑆 ∧ ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩ ∈ ((ℤ𝐶) × 𝑆)) → ((𝐺𝑣)(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
11289, 92, 99, 111syl3anc 1216 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → ((𝐺𝑣)(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
11387, 112syl5eqr 2186 . . . . . . . . 9 ((𝜑𝑣 ∈ ω) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
11486, 113sylan9eqr 2194 . . . . . . . 8 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
11585, 114eqtrd 2172 . . . . . . 7 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝑅‘suc 𝑣) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
11688, 32, 78frec2uzsucd 10186 . . . . . . . . 9 ((𝜑𝑣 ∈ ω) → (𝐺‘suc 𝑣) = ((𝐺𝑣) + 1))
117116adantr 274 . . . . . . . 8 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝐺‘suc 𝑣) = ((𝐺𝑣) + 1))
118115fveq2d 5425 . . . . . . . . 9 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (2nd ‘(𝑅‘suc 𝑣)) = (2nd ‘⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩))
11988, 32, 78frec2uzzd 10185 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ ω) → (𝐺𝑣) ∈ ℤ)
120119peano2zd 9188 . . . . . . . . . . 11 ((𝜑𝑣 ∈ ω) → ((𝐺𝑣) + 1) ∈ ℤ)
121120adantr 274 . . . . . . . . . 10 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → ((𝐺𝑣) + 1) ∈ ℤ)
12297adantr 274 . . . . . . . . . 10 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))) ∈ 𝑆)
123 op2ndg 6049 . . . . . . . . . 10 ((((𝐺𝑣) + 1) ∈ ℤ ∧ ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))) ∈ 𝑆) → (2nd ‘⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
124121, 122, 123syl2anc 408 . . . . . . . . 9 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (2nd ‘⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
125118, 124eqtrd 2172 . . . . . . . 8 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (2nd ‘(𝑅‘suc 𝑣)) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
126117, 125opeq12d 3713 . . . . . . 7 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
127115, 126eqtr4d 2175 . . . . . 6 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
128127ex 114 . . . . 5 ((𝜑𝑣 ∈ ω) → ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩))
129128expcom 115 . . . 4 (𝑣 ∈ ω → (𝜑 → ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)))
13012, 17, 22, 41, 129finds2 4515 . . 3 (𝑧 ∈ ω → (𝜑 → (𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩))
1317, 130vtoclga 2752 . 2 (𝐵 ∈ ω → (𝜑 → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩))
1321, 131mpcom 36 1 (𝜑 → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  Vcvv 2686  c0 3363  cop 3530  cmpt 3989  suc csuc 4287  ωcom 4504   × cxp 4537  cfv 5123  (class class class)co 5774  cmpo 5776  1st c1st 6036  2nd c2nd 6037  freccfrec 6287  1c1 7633   + caddc 7635  cz 9066  cuz 9338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-ltadd 7748
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-inn 8733  df-n0 8990  df-z 9067  df-uz 9339
This theorem is referenced by:  frecuzrdglem  10196  frecuzrdgtcl  10197  frecuzrdgsuc  10199
  Copyright terms: Public domain W3C validator