| Step | Hyp | Ref
 | Expression | 
| 1 |   | frec2uzrdg.b | 
. 2
⊢ (𝜑 → 𝐵 ∈ ω) | 
| 2 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑧 = 𝐵 → (𝑅‘𝑧) = (𝑅‘𝐵)) | 
| 3 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝐺‘𝑧) = (𝐺‘𝐵)) | 
| 4 | 2 | fveq2d 5562 | 
. . . . . 6
⊢ (𝑧 = 𝐵 → (2nd ‘(𝑅‘𝑧)) = (2nd ‘(𝑅‘𝐵))) | 
| 5 | 3, 4 | opeq12d 3816 | 
. . . . 5
⊢ (𝑧 = 𝐵 → 〈(𝐺‘𝑧), (2nd ‘(𝑅‘𝑧))〉 = 〈(𝐺‘𝐵), (2nd ‘(𝑅‘𝐵))〉) | 
| 6 | 2, 5 | eqeq12d 2211 | 
. . . 4
⊢ (𝑧 = 𝐵 → ((𝑅‘𝑧) = 〈(𝐺‘𝑧), (2nd ‘(𝑅‘𝑧))〉 ↔ (𝑅‘𝐵) = 〈(𝐺‘𝐵), (2nd ‘(𝑅‘𝐵))〉)) | 
| 7 | 6 | imbi2d 230 | 
. . 3
⊢ (𝑧 = 𝐵 → ((𝜑 → (𝑅‘𝑧) = 〈(𝐺‘𝑧), (2nd ‘(𝑅‘𝑧))〉) ↔ (𝜑 → (𝑅‘𝐵) = 〈(𝐺‘𝐵), (2nd ‘(𝑅‘𝐵))〉))) | 
| 8 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑧 = ∅ → (𝑅‘𝑧) = (𝑅‘∅)) | 
| 9 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑧 = ∅ → (𝐺‘𝑧) = (𝐺‘∅)) | 
| 10 | 8 | fveq2d 5562 | 
. . . . . 6
⊢ (𝑧 = ∅ →
(2nd ‘(𝑅‘𝑧)) = (2nd ‘(𝑅‘∅))) | 
| 11 | 9, 10 | opeq12d 3816 | 
. . . . 5
⊢ (𝑧 = ∅ → 〈(𝐺‘𝑧), (2nd ‘(𝑅‘𝑧))〉 = 〈(𝐺‘∅), (2nd
‘(𝑅‘∅))〉) | 
| 12 | 8, 11 | eqeq12d 2211 | 
. . . 4
⊢ (𝑧 = ∅ → ((𝑅‘𝑧) = 〈(𝐺‘𝑧), (2nd ‘(𝑅‘𝑧))〉 ↔ (𝑅‘∅) = 〈(𝐺‘∅), (2nd
‘(𝑅‘∅))〉)) | 
| 13 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑧 = 𝑣 → (𝑅‘𝑧) = (𝑅‘𝑣)) | 
| 14 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑧 = 𝑣 → (𝐺‘𝑧) = (𝐺‘𝑣)) | 
| 15 | 13 | fveq2d 5562 | 
. . . . . 6
⊢ (𝑧 = 𝑣 → (2nd ‘(𝑅‘𝑧)) = (2nd ‘(𝑅‘𝑣))) | 
| 16 | 14, 15 | opeq12d 3816 | 
. . . . 5
⊢ (𝑧 = 𝑣 → 〈(𝐺‘𝑧), (2nd ‘(𝑅‘𝑧))〉 = 〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉) | 
| 17 | 13, 16 | eqeq12d 2211 | 
. . . 4
⊢ (𝑧 = 𝑣 → ((𝑅‘𝑧) = 〈(𝐺‘𝑧), (2nd ‘(𝑅‘𝑧))〉 ↔ (𝑅‘𝑣) = 〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉)) | 
| 18 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑧 = suc 𝑣 → (𝑅‘𝑧) = (𝑅‘suc 𝑣)) | 
| 19 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑧 = suc 𝑣 → (𝐺‘𝑧) = (𝐺‘suc 𝑣)) | 
| 20 | 18 | fveq2d 5562 | 
. . . . . 6
⊢ (𝑧 = suc 𝑣 → (2nd ‘(𝑅‘𝑧)) = (2nd ‘(𝑅‘suc 𝑣))) | 
| 21 | 19, 20 | opeq12d 3816 | 
. . . . 5
⊢ (𝑧 = suc 𝑣 → 〈(𝐺‘𝑧), (2nd ‘(𝑅‘𝑧))〉 = 〈(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))〉) | 
| 22 | 18, 21 | eqeq12d 2211 | 
. . . 4
⊢ (𝑧 = suc 𝑣 → ((𝑅‘𝑧) = 〈(𝐺‘𝑧), (2nd ‘(𝑅‘𝑧))〉 ↔ (𝑅‘suc 𝑣) = 〈(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))〉)) | 
| 23 |   | frecuzrdgrrn.2 | 
. . . . . . 7
⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) | 
| 24 | 23 | fveq1i 5559 | 
. . . . . 6
⊢ (𝑅‘∅) = (frec((𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) | 
| 25 |   | frec2uz.1 | 
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ℤ) | 
| 26 |   | frecuzrdgrrn.a | 
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑆) | 
| 27 |   | opexg 4261 | 
. . . . . . . 8
⊢ ((𝐶 ∈ ℤ ∧ 𝐴 ∈ 𝑆) → 〈𝐶, 𝐴〉 ∈ V) | 
| 28 | 25, 26, 27 | syl2anc 411 | 
. . . . . . 7
⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ V) | 
| 29 |   | frec0g 6455 | 
. . . . . . 7
⊢
(〈𝐶, 𝐴〉 ∈ V →
(frec((𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) = 〈𝐶, 𝐴〉) | 
| 30 | 28, 29 | syl 14 | 
. . . . . 6
⊢ (𝜑 → (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘∅) = 〈𝐶, 𝐴〉) | 
| 31 | 24, 30 | eqtrid 2241 | 
. . . . 5
⊢ (𝜑 → (𝑅‘∅) = 〈𝐶, 𝐴〉) | 
| 32 |   | frec2uz.2 | 
. . . . . . 7
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | 
| 33 | 25, 32 | frec2uz0d 10491 | 
. . . . . 6
⊢ (𝜑 → (𝐺‘∅) = 𝐶) | 
| 34 | 31 | fveq2d 5562 | 
. . . . . . 7
⊢ (𝜑 → (2nd
‘(𝑅‘∅)) =
(2nd ‘〈𝐶, 𝐴〉)) | 
| 35 |   | uzid 9615 | 
. . . . . . . . 9
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
(ℤ≥‘𝐶)) | 
| 36 | 25, 35 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐶)) | 
| 37 |   | op2ndg 6209 | 
. . . . . . . 8
⊢ ((𝐶 ∈
(ℤ≥‘𝐶) ∧ 𝐴 ∈ 𝑆) → (2nd ‘〈𝐶, 𝐴〉) = 𝐴) | 
| 38 | 36, 26, 37 | syl2anc 411 | 
. . . . . . 7
⊢ (𝜑 → (2nd
‘〈𝐶, 𝐴〉) = 𝐴) | 
| 39 | 34, 38 | eqtrd 2229 | 
. . . . . 6
⊢ (𝜑 → (2nd
‘(𝑅‘∅)) =
𝐴) | 
| 40 | 33, 39 | opeq12d 3816 | 
. . . . 5
⊢ (𝜑 → 〈(𝐺‘∅), (2nd
‘(𝑅‘∅))〉 = 〈𝐶, 𝐴〉) | 
| 41 | 31, 40 | eqtr4d 2232 | 
. . . 4
⊢ (𝜑 → (𝑅‘∅) = 〈(𝐺‘∅), (2nd
‘(𝑅‘∅))〉) | 
| 42 |   | 1st2nd2 6233 | 
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈
((ℤ≥‘𝐶) × 𝑆) → 𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉) | 
| 43 | 42 | adantl 277 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → 𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉) | 
| 44 | 43 | fveq2d 5562 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(1st
‘𝑧), (2nd
‘𝑧)〉)) | 
| 45 |   | df-ov 5925 | 
. . . . . . . . . . . . . . 15
⊢
((1st ‘𝑧)(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘𝑧)) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(1st
‘𝑧), (2nd
‘𝑧)〉) | 
| 46 |   | xp1st 6223 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈
((ℤ≥‘𝐶) × 𝑆) → (1st ‘𝑧) ∈
(ℤ≥‘𝐶)) | 
| 47 | 46 | adantl 277 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → (1st ‘𝑧) ∈
(ℤ≥‘𝐶)) | 
| 48 |   | xp2nd 6224 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈
((ℤ≥‘𝐶) × 𝑆) → (2nd ‘𝑧) ∈ 𝑆) | 
| 49 | 48 | adantl 277 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → (2nd ‘𝑧) ∈ 𝑆) | 
| 50 |   | peano2uz 9657 | 
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑧) ∈ (ℤ≥‘𝐶) → ((1st
‘𝑧) + 1) ∈
(ℤ≥‘𝐶)) | 
| 51 | 47, 50 | syl 14 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((1st ‘𝑧) + 1) ∈
(ℤ≥‘𝐶)) | 
| 52 |   | frecuzrdgrrn.f | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | 
| 53 | 52 | ralrimivva 2579 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝐶)∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝑆) | 
| 54 | 53 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ∀𝑥 ∈ (ℤ≥‘𝐶)∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝑆) | 
| 55 |   | oveq1 5929 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = (1st ‘𝑧) → (𝑥𝐹𝑦) = ((1st ‘𝑧)𝐹𝑦)) | 
| 56 | 55 | eleq1d 2265 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (1st ‘𝑧) → ((𝑥𝐹𝑦) ∈ 𝑆 ↔ ((1st ‘𝑧)𝐹𝑦) ∈ 𝑆)) | 
| 57 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = (2nd ‘𝑧) → ((1st
‘𝑧)𝐹𝑦) = ((1st ‘𝑧)𝐹(2nd ‘𝑧))) | 
| 58 | 57 | eleq1d 2265 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (2nd ‘𝑧) → (((1st
‘𝑧)𝐹𝑦) ∈ 𝑆 ↔ ((1st ‘𝑧)𝐹(2nd ‘𝑧)) ∈ 𝑆)) | 
| 59 | 56, 58 | rspc2v 2881 | 
. . . . . . . . . . . . . . . . . . 19
⊢
(((1st ‘𝑧) ∈ (ℤ≥‘𝐶) ∧ (2nd
‘𝑧) ∈ 𝑆) → (∀𝑥 ∈
(ℤ≥‘𝐶)∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝑆 → ((1st ‘𝑧)𝐹(2nd ‘𝑧)) ∈ 𝑆)) | 
| 60 | 47, 49, 59 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → (∀𝑥 ∈ (ℤ≥‘𝐶)∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝑆 → ((1st ‘𝑧)𝐹(2nd ‘𝑧)) ∈ 𝑆)) | 
| 61 | 54, 60 | mpd 13 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((1st ‘𝑧)𝐹(2nd ‘𝑧)) ∈ 𝑆) | 
| 62 |   | opelxp 4693 | 
. . . . . . . . . . . . . . . . 17
⊢
(〈((1st ‘𝑧) + 1), ((1st ‘𝑧)𝐹(2nd ‘𝑧))〉 ∈
((ℤ≥‘𝐶) × 𝑆) ↔ (((1st ‘𝑧) + 1) ∈
(ℤ≥‘𝐶) ∧ ((1st ‘𝑧)𝐹(2nd ‘𝑧)) ∈ 𝑆)) | 
| 63 | 51, 61, 62 | sylanbrc 417 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹(2nd ‘𝑧))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) | 
| 64 |   | oveq1 5929 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (1st ‘𝑧) → (𝑥 + 1) = ((1st ‘𝑧) + 1)) | 
| 65 | 64, 55 | opeq12d 3816 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (1st ‘𝑧) → 〈(𝑥 + 1), (𝑥𝐹𝑦)〉 = 〈((1st ‘𝑧) + 1), ((1st
‘𝑧)𝐹𝑦)〉) | 
| 66 | 57 | opeq2d 3815 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (2nd ‘𝑧) → 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹𝑦)〉 = 〈((1st ‘𝑧) + 1), ((1st
‘𝑧)𝐹(2nd ‘𝑧))〉) | 
| 67 |   | eqid 2196 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉) = (𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉) | 
| 68 | 65, 66, 67 | ovmpog 6057 | 
. . . . . . . . . . . . . . . 16
⊢
(((1st ‘𝑧) ∈ (ℤ≥‘𝐶) ∧ (2nd
‘𝑧) ∈ 𝑆 ∧ 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹(2nd ‘𝑧))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) → ((1st ‘𝑧)(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘𝑧)) = 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹(2nd ‘𝑧))〉) | 
| 69 | 47, 49, 63, 68 | syl3anc 1249 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((1st ‘𝑧)(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘𝑧)) = 〈((1st
‘𝑧) + 1),
((1st ‘𝑧)𝐹(2nd ‘𝑧))〉) | 
| 70 | 45, 69 | eqtr3id 2243 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(1st
‘𝑧), (2nd
‘𝑧)〉) =
〈((1st ‘𝑧) + 1), ((1st ‘𝑧)𝐹(2nd ‘𝑧))〉) | 
| 71 | 70, 63 | eqeltrd 2273 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(1st
‘𝑧), (2nd
‘𝑧)〉) ∈
((ℤ≥‘𝐶) × 𝑆)) | 
| 72 | 44, 71 | eqeltrd 2273 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) ∈ ((ℤ≥‘𝐶) × 𝑆)) | 
| 73 | 72 | ralrimiva 2570 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → ∀𝑧 ∈
((ℤ≥‘𝐶) × 𝑆)((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) ∈ ((ℤ≥‘𝐶) × 𝑆)) | 
| 74 | 36 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → 𝐶 ∈ (ℤ≥‘𝐶)) | 
| 75 | 26 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → 𝐴 ∈ 𝑆) | 
| 76 |   | opelxp 4693 | 
. . . . . . . . . . . 12
⊢
(〈𝐶, 𝐴〉 ∈
((ℤ≥‘𝐶) × 𝑆) ↔ (𝐶 ∈ (ℤ≥‘𝐶) ∧ 𝐴 ∈ 𝑆)) | 
| 77 | 74, 75, 76 | sylanbrc 417 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → 〈𝐶, 𝐴〉 ∈
((ℤ≥‘𝐶) × 𝑆)) | 
| 78 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → 𝑣 ∈ ω) | 
| 79 |   | frecsuc 6465 | 
. . . . . . . . . . 11
⊢
((∀𝑧 ∈
((ℤ≥‘𝐶) × 𝑆)((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘𝑧) ∈ ((ℤ≥‘𝐶) × 𝑆) ∧ 〈𝐶, 𝐴〉 ∈
((ℤ≥‘𝐶) × 𝑆) ∧ 𝑣 ∈ ω) → (frec((𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘suc 𝑣) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘𝑣))) | 
| 80 | 73, 77, 78, 79 | syl3anc 1249 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → (frec((𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘suc 𝑣) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘𝑣))) | 
| 81 | 23 | fveq1i 5559 | 
. . . . . . . . . 10
⊢ (𝑅‘suc 𝑣) = (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘suc 𝑣) | 
| 82 | 23 | fveq1i 5559 | 
. . . . . . . . . . 11
⊢ (𝑅‘𝑣) = (frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘𝑣) | 
| 83 | 82 | fveq2i 5561 | 
. . . . . . . . . 10
⊢ ((𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(𝑅‘𝑣)) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)‘𝑣)) | 
| 84 | 80, 81, 83 | 3eqtr4g 2254 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → (𝑅‘suc 𝑣) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(𝑅‘𝑣))) | 
| 85 | 84 | adantr 276 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ (𝑅‘𝑣) = 〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉) → (𝑅‘suc 𝑣) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(𝑅‘𝑣))) | 
| 86 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ ((𝑅‘𝑣) = 〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉 → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(𝑅‘𝑣)) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉)) | 
| 87 |   | df-ov 5925 | 
. . . . . . . . . 10
⊢ ((𝐺‘𝑣)(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘𝑣))) = ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉) | 
| 88 | 25 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → 𝐶 ∈ ℤ) | 
| 89 | 88, 32, 78 | frec2uzuzd 10494 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → (𝐺‘𝑣) ∈ (ℤ≥‘𝐶)) | 
| 90 | 25, 32, 26, 52, 23 | frecuzrdgrrn 10500 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → (𝑅‘𝑣) ∈ ((ℤ≥‘𝐶) × 𝑆)) | 
| 91 |   | xp2nd 6224 | 
. . . . . . . . . . . 12
⊢ ((𝑅‘𝑣) ∈ ((ℤ≥‘𝐶) × 𝑆) → (2nd ‘(𝑅‘𝑣)) ∈ 𝑆) | 
| 92 | 90, 91 | syl 14 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → (2nd
‘(𝑅‘𝑣)) ∈ 𝑆) | 
| 93 |   | peano2uz 9657 | 
. . . . . . . . . . . . 13
⊢ ((𝐺‘𝑣) ∈ (ℤ≥‘𝐶) → ((𝐺‘𝑣) + 1) ∈
(ℤ≥‘𝐶)) | 
| 94 | 89, 93 | syl 14 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → ((𝐺‘𝑣) + 1) ∈
(ℤ≥‘𝐶)) | 
| 95 | 52 | caovclg 6076 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑧 ∈ (ℤ≥‘𝐶) ∧ 𝑤 ∈ 𝑆)) → (𝑧𝐹𝑤) ∈ 𝑆) | 
| 96 | 95 | adantlr 477 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ (𝑧 ∈ (ℤ≥‘𝐶) ∧ 𝑤 ∈ 𝑆)) → (𝑧𝐹𝑤) ∈ 𝑆) | 
| 97 | 96, 89, 92 | caovcld 6077 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣))) ∈ 𝑆) | 
| 98 |   | opelxp 4693 | 
. . . . . . . . . . . 12
⊢
(〈((𝐺‘𝑣) + 1), ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣)))〉 ∈
((ℤ≥‘𝐶) × 𝑆) ↔ (((𝐺‘𝑣) + 1) ∈
(ℤ≥‘𝐶) ∧ ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣))) ∈ 𝑆)) | 
| 99 | 94, 97, 98 | sylanbrc 417 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → 〈((𝐺‘𝑣) + 1), ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣)))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) | 
| 100 |   | oveq1 5929 | 
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝐺‘𝑣) → (𝑤 + 1) = ((𝐺‘𝑣) + 1)) | 
| 101 |   | oveq1 5929 | 
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝐺‘𝑣) → (𝑤𝐹𝑧) = ((𝐺‘𝑣)𝐹𝑧)) | 
| 102 | 100, 101 | opeq12d 3816 | 
. . . . . . . . . . . 12
⊢ (𝑤 = (𝐺‘𝑣) → 〈(𝑤 + 1), (𝑤𝐹𝑧)〉 = 〈((𝐺‘𝑣) + 1), ((𝐺‘𝑣)𝐹𝑧)〉) | 
| 103 |   | oveq2 5930 | 
. . . . . . . . . . . . 13
⊢ (𝑧 = (2nd ‘(𝑅‘𝑣)) → ((𝐺‘𝑣)𝐹𝑧) = ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣)))) | 
| 104 | 103 | opeq2d 3815 | 
. . . . . . . . . . . 12
⊢ (𝑧 = (2nd ‘(𝑅‘𝑣)) → 〈((𝐺‘𝑣) + 1), ((𝐺‘𝑣)𝐹𝑧)〉 = 〈((𝐺‘𝑣) + 1), ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣)))〉) | 
| 105 |   | oveq1 5929 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝑥 + 1) = (𝑤 + 1)) | 
| 106 |   | oveq1 5929 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝑥𝐹𝑦) = (𝑤𝐹𝑦)) | 
| 107 | 105, 106 | opeq12d 3816 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → 〈(𝑥 + 1), (𝑥𝐹𝑦)〉 = 〈(𝑤 + 1), (𝑤𝐹𝑦)〉) | 
| 108 |   | oveq2 5930 | 
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (𝑤𝐹𝑦) = (𝑤𝐹𝑧)) | 
| 109 | 108 | opeq2d 3815 | 
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → 〈(𝑤 + 1), (𝑤𝐹𝑦)〉 = 〈(𝑤 + 1), (𝑤𝐹𝑧)〉) | 
| 110 | 107, 109 | cbvmpov 6002 | 
. . . . . . . . . . . 12
⊢ (𝑥 ∈
(ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉) = (𝑤 ∈ (ℤ≥‘𝐶), 𝑧 ∈ 𝑆 ↦ 〈(𝑤 + 1), (𝑤𝐹𝑧)〉) | 
| 111 | 102, 104,
110 | ovmpog 6057 | 
. . . . . . . . . . 11
⊢ (((𝐺‘𝑣) ∈ (ℤ≥‘𝐶) ∧ (2nd
‘(𝑅‘𝑣)) ∈ 𝑆 ∧ 〈((𝐺‘𝑣) + 1), ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣)))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) → ((𝐺‘𝑣)(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘𝑣))) = 〈((𝐺‘𝑣) + 1), ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣)))〉) | 
| 112 | 89, 92, 99, 111 | syl3anc 1249 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → ((𝐺‘𝑣)(𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘𝑣))) = 〈((𝐺‘𝑣) + 1), ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣)))〉) | 
| 113 | 87, 112 | eqtr3id 2243 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉) = 〈((𝐺‘𝑣) + 1), ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣)))〉) | 
| 114 | 86, 113 | sylan9eqr 2251 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ (𝑅‘𝑣) = 〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉) → ((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉)‘(𝑅‘𝑣)) = 〈((𝐺‘𝑣) + 1), ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣)))〉) | 
| 115 | 85, 114 | eqtrd 2229 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ (𝑅‘𝑣) = 〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉) → (𝑅‘suc 𝑣) = 〈((𝐺‘𝑣) + 1), ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣)))〉) | 
| 116 | 88, 32, 78 | frec2uzsucd 10493 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → (𝐺‘suc 𝑣) = ((𝐺‘𝑣) + 1)) | 
| 117 | 116 | adantr 276 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ (𝑅‘𝑣) = 〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉) → (𝐺‘suc 𝑣) = ((𝐺‘𝑣) + 1)) | 
| 118 | 115 | fveq2d 5562 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ (𝑅‘𝑣) = 〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉) → (2nd
‘(𝑅‘suc 𝑣)) = (2nd
‘〈((𝐺‘𝑣) + 1), ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣)))〉)) | 
| 119 | 88, 32, 78 | frec2uzzd 10492 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → (𝐺‘𝑣) ∈ ℤ) | 
| 120 | 119 | peano2zd 9451 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → ((𝐺‘𝑣) + 1) ∈ ℤ) | 
| 121 | 120 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ (𝑅‘𝑣) = 〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉) → ((𝐺‘𝑣) + 1) ∈ ℤ) | 
| 122 | 97 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ (𝑅‘𝑣) = 〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉) → ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣))) ∈ 𝑆) | 
| 123 |   | op2ndg 6209 | 
. . . . . . . . . 10
⊢ ((((𝐺‘𝑣) + 1) ∈ ℤ ∧ ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣))) ∈ 𝑆) → (2nd
‘〈((𝐺‘𝑣) + 1), ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣)))〉) = ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣)))) | 
| 124 | 121, 122,
123 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ (𝑅‘𝑣) = 〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉) → (2nd
‘〈((𝐺‘𝑣) + 1), ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣)))〉) = ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣)))) | 
| 125 | 118, 124 | eqtrd 2229 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ (𝑅‘𝑣) = 〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉) → (2nd
‘(𝑅‘suc 𝑣)) = ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣)))) | 
| 126 | 117, 125 | opeq12d 3816 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ (𝑅‘𝑣) = 〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉) → 〈(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))〉 = 〈((𝐺‘𝑣) + 1), ((𝐺‘𝑣)𝐹(2nd ‘(𝑅‘𝑣)))〉) | 
| 127 | 115, 126 | eqtr4d 2232 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑣 ∈ ω) ∧ (𝑅‘𝑣) = 〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉) → (𝑅‘suc 𝑣) = 〈(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))〉) | 
| 128 | 127 | ex 115 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ ω) → ((𝑅‘𝑣) = 〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉 → (𝑅‘suc 𝑣) = 〈(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))〉)) | 
| 129 | 128 | expcom 116 | 
. . . 4
⊢ (𝑣 ∈ ω → (𝜑 → ((𝑅‘𝑣) = 〈(𝐺‘𝑣), (2nd ‘(𝑅‘𝑣))〉 → (𝑅‘suc 𝑣) = 〈(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))〉))) | 
| 130 | 12, 17, 22, 41, 129 | finds2 4637 | 
. . 3
⊢ (𝑧 ∈ ω → (𝜑 → (𝑅‘𝑧) = 〈(𝐺‘𝑧), (2nd ‘(𝑅‘𝑧))〉)) | 
| 131 | 7, 130 | vtoclga 2830 | 
. 2
⊢ (𝐵 ∈ ω → (𝜑 → (𝑅‘𝐵) = 〈(𝐺‘𝐵), (2nd ‘(𝑅‘𝐵))〉)) | 
| 132 | 1, 131 | mpcom 36 | 
1
⊢ (𝜑 → (𝑅‘𝐵) = 〈(𝐺‘𝐵), (2nd ‘(𝑅‘𝐵))〉) |