| Step | Hyp | Ref
| Expression |
| 1 | | seq3caopr.1 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 2 | 1 | caovclg 6076 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 + 𝑏) ∈ 𝑆) |
| 3 | | simpl 109 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → 𝜑) |
| 4 | | simprrl 539 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → 𝑐 ∈ 𝑆) |
| 5 | | simprlr 538 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → 𝑏 ∈ 𝑆) |
| 6 | | seq3caopr.2 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 7 | 6 | caovcomg 6079 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑐 + 𝑏) = (𝑏 + 𝑐)) |
| 8 | 3, 4, 5, 7 | syl12anc 1247 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → (𝑐 + 𝑏) = (𝑏 + 𝑐)) |
| 9 | 8 | oveq1d 5937 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑐 + 𝑏) + 𝑑) = ((𝑏 + 𝑐) + 𝑑)) |
| 10 | | simprrr 540 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → 𝑑 ∈ 𝑆) |
| 11 | | seq3caopr.3 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 12 | 11 | caovassg 6082 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → ((𝑐 + 𝑏) + 𝑑) = (𝑐 + (𝑏 + 𝑑))) |
| 13 | 3, 4, 5, 10, 12 | syl13anc 1251 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑐 + 𝑏) + 𝑑) = (𝑐 + (𝑏 + 𝑑))) |
| 14 | 11 | caovassg 6082 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → ((𝑏 + 𝑐) + 𝑑) = (𝑏 + (𝑐 + 𝑑))) |
| 15 | 3, 5, 4, 10, 14 | syl13anc 1251 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑏 + 𝑐) + 𝑑) = (𝑏 + (𝑐 + 𝑑))) |
| 16 | 9, 13, 15 | 3eqtr3d 2237 |
. . . 4
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → (𝑐 + (𝑏 + 𝑑)) = (𝑏 + (𝑐 + 𝑑))) |
| 17 | 16 | oveq2d 5938 |
. . 3
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → (𝑎 + (𝑐 + (𝑏 + 𝑑))) = (𝑎 + (𝑏 + (𝑐 + 𝑑)))) |
| 18 | | simprll 537 |
. . . 4
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → 𝑎 ∈ 𝑆) |
| 19 | 1 | caovclg 6076 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → (𝑏 + 𝑑) ∈ 𝑆) |
| 20 | 3, 5, 10, 19 | syl12anc 1247 |
. . . 4
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → (𝑏 + 𝑑) ∈ 𝑆) |
| 21 | 11 | caovassg 6082 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ∧ (𝑏 + 𝑑) ∈ 𝑆)) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = (𝑎 + (𝑐 + (𝑏 + 𝑑)))) |
| 22 | 3, 18, 4, 20, 21 | syl13anc 1251 |
. . 3
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = (𝑎 + (𝑐 + (𝑏 + 𝑑)))) |
| 23 | 1 | caovclg 6076 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → (𝑐 + 𝑑) ∈ 𝑆) |
| 24 | 23 | adantrl 478 |
. . . 4
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → (𝑐 + 𝑑) ∈ 𝑆) |
| 25 | 11 | caovassg 6082 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ (𝑐 + 𝑑) ∈ 𝑆)) → ((𝑎 + 𝑏) + (𝑐 + 𝑑)) = (𝑎 + (𝑏 + (𝑐 + 𝑑)))) |
| 26 | 3, 18, 5, 24, 25 | syl13anc 1251 |
. . 3
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑎 + 𝑏) + (𝑐 + 𝑑)) = (𝑎 + (𝑏 + (𝑐 + 𝑑)))) |
| 27 | 17, 22, 26 | 3eqtr4d 2239 |
. 2
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆))) → ((𝑎 + 𝑐) + (𝑏 + 𝑑)) = ((𝑎 + 𝑏) + (𝑐 + 𝑑))) |
| 28 | | seq3caopr.4 |
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 29 | | seq3caopr.5 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆) |
| 30 | | seq3caopr.6 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ 𝑆) |
| 31 | | seq3caopr.7 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
| 32 | 2, 2, 27, 28, 29, 30, 31 | seq3caopr2 10585 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁))) |