ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcl GIF version

Theorem climcl 11447
Description: Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
climcl (𝐹𝐴𝐴 ∈ ℂ)

Proof of Theorem climcl
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 11445 . . . . 5 Rel ⇝
21brrelex1i 4706 . . . 4 (𝐹𝐴𝐹 ∈ V)
3 eqidd 2197 . . . 4 ((𝐹𝐴𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
42, 3clim 11446 . . 3 (𝐹𝐴 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
54ibi 176 . 2 (𝐹𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
65simpld 112 1 (𝐹𝐴𝐴 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wral 2475  wrex 2476  Vcvv 2763   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877   < clt 8061  cmin 8197  cz 9326  cuz 9601  +crp 9728  abscabs 11162  cli 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-cnex 7970  ax-resscn 7971
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-neg 8200  df-z 9327  df-uz 9602  df-clim 11444
This theorem is referenced by:  climuni  11458  fclim  11459  climeu  11461  climreu  11462  2clim  11466  climcn1lem  11484  climrecl  11489  climadd  11491  climmul  11492  climsub  11493  climaddc2  11495  climcau  11512  geoisum1c  11685  clim2divap  11705  ntrivcvgap  11713
  Copyright terms: Public domain W3C validator