| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climcl | GIF version | ||
| Description: Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| climcl | ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climrel 11786 | . . . . 5 ⊢ Rel ⇝ | |
| 2 | 1 | brrelex1i 4761 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐹 ∈ V) |
| 3 | eqidd 2230 | . . . 4 ⊢ ((𝐹 ⇝ 𝐴 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
| 4 | 2, 3 | clim 11787 | . . 3 ⊢ (𝐹 ⇝ 𝐴 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
| 5 | 4 | ibi 176 | . 2 ⊢ (𝐹 ⇝ 𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
| 6 | 5 | simpld 112 | 1 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 Vcvv 2799 class class class wbr 4082 ‘cfv 5317 (class class class)co 6000 ℂcc 7993 < clt 8177 − cmin 8313 ℤcz 9442 ℤ≥cuz 9718 ℝ+crp 9845 abscabs 11503 ⇝ cli 11784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-neg 8316 df-z 9443 df-uz 9719 df-clim 11785 |
| This theorem is referenced by: climuni 11799 fclim 11800 climeu 11802 climreu 11803 2clim 11807 climcn1lem 11825 climrecl 11830 climadd 11832 climmul 11833 climsub 11834 climaddc2 11836 climcau 11853 geoisum1c 12026 clim2divap 12046 ntrivcvgap 12054 |
| Copyright terms: Public domain | W3C validator |