ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcl GIF version

Theorem climcl 11223
Description: Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
climcl (𝐹𝐴𝐴 ∈ ℂ)

Proof of Theorem climcl
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 11221 . . . . 5 Rel ⇝
21brrelex1i 4647 . . . 4 (𝐹𝐴𝐹 ∈ V)
3 eqidd 2166 . . . 4 ((𝐹𝐴𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
42, 3clim 11222 . . 3 (𝐹𝐴 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
54ibi 175 . 2 (𝐹𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
65simpld 111 1 (𝐹𝐴𝐴 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2136  wral 2444  wrex 2445  Vcvv 2726   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751   < clt 7933  cmin 8069  cz 9191  cuz 9466  +crp 9589  abscabs 10939  cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-neg 8072  df-z 9192  df-uz 9467  df-clim 11220
This theorem is referenced by:  climuni  11234  fclim  11235  climeu  11237  climreu  11238  2clim  11242  climcn1lem  11260  climrecl  11265  climadd  11267  climmul  11268  climsub  11269  climaddc2  11271  climcau  11288  geoisum1c  11461  clim2divap  11481  ntrivcvgap  11489
  Copyright terms: Public domain W3C validator