ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnvss GIF version

Theorem cnvcnvss 5120
Description: The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
cnvcnvss 𝐴𝐴

Proof of Theorem cnvcnvss
StepHypRef Expression
1 cnvcnv 5118 . 2 𝐴 = (𝐴 ∩ (V × V))
2 inss1 3379 . 2 (𝐴 ∩ (V × V)) ⊆ 𝐴
31, 2eqsstri 3211 1 𝐴𝐴
Colors of variables: wff set class
Syntax hints:  Vcvv 2760  cin 3152  wss 3153   × cxp 4657  ccnv 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667
This theorem is referenced by:  funcnvcnv  5313  foimacnv  5518  cnvct  6863  structcnvcnv  12634
  Copyright terms: Public domain W3C validator