ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvimass GIF version

Theorem cnvimass 4858
Description: A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.)
Assertion
Ref Expression
cnvimass (𝐴𝐵) ⊆ dom 𝐴

Proof of Theorem cnvimass
StepHypRef Expression
1 imassrn 4848 . 2 (𝐴𝐵) ⊆ ran 𝐴
2 dfdm4 4689 . 2 dom 𝐴 = ran 𝐴
31, 2sseqtr4i 3096 1 (𝐴𝐵) ⊆ dom 𝐴
Colors of variables: wff set class
Syntax hints:  wss 3035  ccnv 4496  dom cdm 4497  ran crn 4498  cima 4500
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-xp 4503  df-cnv 4505  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510
This theorem is referenced by:  fvimacnvi  5486  elpreima  5491  fconst4m  5592  nn0supp  8927  fisumss  11047  cnpnei  12224  cnclima  12228  cnntri  12229  cnntr  12230  cncnp  12235  cnrest2  12241  cndis  12246  txcnmpt  12278  txdis1cn  12283  xmeter  12419
  Copyright terms: Public domain W3C validator