| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvimass | GIF version | ||
| Description: A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.) |
| Ref | Expression |
|---|---|
| cnvimass | ⊢ (◡𝐴 “ 𝐵) ⊆ dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 5020 | . 2 ⊢ (◡𝐴 “ 𝐵) ⊆ ran ◡𝐴 | |
| 2 | dfdm4 4858 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 3 | 1, 2 | sseqtrri 3218 | 1 ⊢ (◡𝐴 “ 𝐵) ⊆ dom 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3157 ◡ccnv 4662 dom cdm 4663 ran crn 4664 “ cima 4666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 |
| This theorem is referenced by: fvimacnvi 5676 elpreima 5681 fconst4m 5782 pw2f1odclem 6895 nn0supp 9301 fisumss 11557 fprodssdc 11755 1arith 12536 ghmpreima 13396 cnpnei 14455 cnclima 14459 cnntri 14460 cnntr 14461 cncnp 14466 cnrest2 14472 cndis 14477 txcnmpt 14509 txdis1cn 14514 hmeoimaf1o 14550 xmeter 14672 |
| Copyright terms: Public domain | W3C validator |