| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvimass | GIF version | ||
| Description: A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.) |
| Ref | Expression |
|---|---|
| cnvimass | ⊢ (◡𝐴 “ 𝐵) ⊆ dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 5021 | . 2 ⊢ (◡𝐴 “ 𝐵) ⊆ ran ◡𝐴 | |
| 2 | dfdm4 4859 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 3 | 1, 2 | sseqtrri 3219 | 1 ⊢ (◡𝐴 “ 𝐵) ⊆ dom 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3157 ◡ccnv 4663 dom cdm 4664 ran crn 4665 “ cima 4667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 |
| This theorem is referenced by: fvimacnvi 5679 elpreima 5684 fconst4m 5785 pw2f1odclem 6904 nn0supp 9320 fisumss 11576 fprodssdc 11774 1arith 12563 ghmpreima 13474 psrbagfi 14307 cnpnei 14563 cnclima 14567 cnntri 14568 cnntr 14569 cncnp 14574 cnrest2 14580 cndis 14585 txcnmpt 14617 txdis1cn 14622 hmeoimaf1o 14658 xmeter 14780 |
| Copyright terms: Public domain | W3C validator |