Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvimass | GIF version |
Description: A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.) |
Ref | Expression |
---|---|
cnvimass | ⊢ (◡𝐴 “ 𝐵) ⊆ dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 4957 | . 2 ⊢ (◡𝐴 “ 𝐵) ⊆ ran ◡𝐴 | |
2 | dfdm4 4796 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
3 | 1, 2 | sseqtrri 3177 | 1 ⊢ (◡𝐴 “ 𝐵) ⊆ dom 𝐴 |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3116 ◡ccnv 4603 dom cdm 4604 ran crn 4605 “ cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: fvimacnvi 5599 elpreima 5604 fconst4m 5705 nn0supp 9166 fisumss 11333 fprodssdc 11531 1arith 12297 cnpnei 12859 cnclima 12863 cnntri 12864 cnntr 12865 cncnp 12870 cnrest2 12876 cndis 12881 txcnmpt 12913 txdis1cn 12918 hmeoimaf1o 12954 xmeter 13076 |
Copyright terms: Public domain | W3C validator |