ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvimass GIF version

Theorem cnvimass 5033
Description: A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.)
Assertion
Ref Expression
cnvimass (𝐴𝐵) ⊆ dom 𝐴

Proof of Theorem cnvimass
StepHypRef Expression
1 imassrn 5021 . 2 (𝐴𝐵) ⊆ ran 𝐴
2 dfdm4 4859 . 2 dom 𝐴 = ran 𝐴
31, 2sseqtrri 3219 1 (𝐴𝐵) ⊆ dom 𝐴
Colors of variables: wff set class
Syntax hints:  wss 3157  ccnv 4663  dom cdm 4664  ran crn 4665  cima 4667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677
This theorem is referenced by:  fvimacnvi  5679  elpreima  5684  fconst4m  5785  pw2f1odclem  6904  nn0supp  9318  fisumss  11574  fprodssdc  11772  1arith  12561  ghmpreima  13472  cnpnei  14539  cnclima  14543  cnntri  14544  cnntr  14545  cncnp  14550  cnrest2  14556  cndis  14561  txcnmpt  14593  txdis1cn  14598  hmeoimaf1o  14634  xmeter  14756
  Copyright terms: Public domain W3C validator