![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvimass | GIF version |
Description: A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.) |
Ref | Expression |
---|---|
cnvimass | ⊢ (◡𝐴 “ 𝐵) ⊆ dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5017 | . 2 ⊢ (◡𝐴 “ 𝐵) ⊆ ran ◡𝐴 | |
2 | dfdm4 4855 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
3 | 1, 2 | sseqtrri 3215 | 1 ⊢ (◡𝐴 “ 𝐵) ⊆ dom 𝐴 |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3154 ◡ccnv 4659 dom cdm 4660 ran crn 4661 “ cima 4663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 |
This theorem is referenced by: fvimacnvi 5673 elpreima 5678 fconst4m 5779 pw2f1odclem 6892 nn0supp 9295 fisumss 11538 fprodssdc 11736 1arith 12508 ghmpreima 13339 cnpnei 14398 cnclima 14402 cnntri 14403 cnntr 14404 cncnp 14409 cnrest2 14415 cndis 14420 txcnmpt 14452 txdis1cn 14457 hmeoimaf1o 14493 xmeter 14615 |
Copyright terms: Public domain | W3C validator |