| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvimass | GIF version | ||
| Description: A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.) |
| Ref | Expression |
|---|---|
| cnvimass | ⊢ (◡𝐴 “ 𝐵) ⊆ dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 5079 | . 2 ⊢ (◡𝐴 “ 𝐵) ⊆ ran ◡𝐴 | |
| 2 | dfdm4 4915 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 3 | 1, 2 | sseqtrri 3259 | 1 ⊢ (◡𝐴 “ 𝐵) ⊆ dom 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3197 ◡ccnv 4718 dom cdm 4719 ran crn 4720 “ cima 4722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 |
| This theorem is referenced by: fvimacnvi 5749 elpreima 5754 fconst4m 5859 pw2f1odclem 6995 nn0supp 9421 fisumss 11903 fprodssdc 12101 1arith 12890 ghmpreima 13803 psrbagfi 14637 cnpnei 14893 cnclima 14897 cnntri 14898 cnntr 14899 cncnp 14904 cnrest2 14910 cndis 14915 txcnmpt 14947 txdis1cn 14952 hmeoimaf1o 14988 xmeter 15110 |
| Copyright terms: Public domain | W3C validator |