ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidifsnid GIF version

Theorem fidifsnid 6733
Description: If we remove a single element from a finite set then put it back in, we end up with the original finite set. This strengthens difsnss 3636 from subset to equality when the set is finite. (Contributed by Jim Kingdon, 9-Sep-2021.)
Assertion
Ref Expression
fidifsnid ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)

Proof of Theorem fidifsnid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fidceq 6731 . . . 4 ((𝐴 ∈ Fin ∧ 𝑥𝐴𝑦𝐴) → DECID 𝑥 = 𝑦)
213expb 1167 . . 3 ((𝐴 ∈ Fin ∧ (𝑥𝐴𝑦𝐴)) → DECID 𝑥 = 𝑦)
32ralrimivva 2491 . 2 (𝐴 ∈ Fin → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
4 dcdifsnid 6368 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
53, 4sylan 281 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 804   = wceq 1316  wcel 1465  wral 2393  cdif 3038  cun 3039  {csn 3497  Fincfn 6602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-en 6603  df-fin 6605
This theorem is referenced by:  findcard2  6751  findcard2s  6752  xpfi  6786  fisseneq  6788  zfz1isolem1  10551
  Copyright terms: Public domain W3C validator