| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ofo | GIF version | ||
| Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.) |
| Ref | Expression |
|---|---|
| f1ofo | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o3 5510 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ◡ccnv 4662 Fun wfun 5252 –onto→wfo 5256 –1-1-onto→wf1o 5257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 |
| This theorem is referenced by: f1imacnv 5521 f1ococnv2 5531 fo00 5540 isoini 5865 isoselem 5867 f1opw2 6129 f1dmex 6173 bren 6806 f1oeng 6816 en1 6858 mapen 6907 ssenen 6912 phplem4 6916 phplem4on 6928 dif1en 6940 fiintim 6992 fidcenumlemim 7018 supisolem 7074 ordiso2 7101 djuunr 7132 omct 7183 ctssexmid 7216 1fv 10214 hashfacen 10928 fsumf1o 11555 fisumss 11557 fprodf1o 11753 fprodssdc 11755 nninfct 12208 ennnfonelemrn 12636 ennnfonelemnn0 12639 ennnfonelemim 12641 exmidunben 12643 ctinfomlemom 12644 ctinfom 12645 qnnen 12648 enctlem 12649 ssomct 12662 xpsfrn 12993 imasgrpf1 13242 imasrngf1 13513 imasringf1 13621 znleval 14209 hmeontr 14549 hmeoimaf1o 14550 fsumdvdsmul 15227 subctctexmid 15645 exmidsbthrlem 15666 sbthomlem 15669 |
| Copyright terms: Public domain | W3C validator |