![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ofo | GIF version |
Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.) |
Ref | Expression |
---|---|
f1ofo | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o3 5506 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) | |
2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ◡ccnv 4658 Fun wfun 5248 –onto→wfo 5252 –1-1-onto→wf1o 5253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 |
This theorem is referenced by: f1imacnv 5517 f1ococnv2 5527 fo00 5536 isoini 5861 isoselem 5863 f1opw2 6124 f1dmex 6168 bren 6801 f1oeng 6811 en1 6853 mapen 6902 ssenen 6907 phplem4 6911 phplem4on 6923 dif1en 6935 fiintim 6985 fidcenumlemim 7011 supisolem 7067 ordiso2 7094 djuunr 7125 omct 7176 ctssexmid 7209 1fv 10205 hashfacen 10907 fsumf1o 11533 fisumss 11535 fprodf1o 11731 fprodssdc 11733 nninfct 12178 ennnfonelemrn 12576 ennnfonelemnn0 12579 ennnfonelemim 12581 exmidunben 12583 ctinfomlemom 12584 ctinfom 12585 qnnen 12588 enctlem 12589 ssomct 12602 xpsfrn 12933 imasgrpf1 13182 imasrngf1 13453 imasringf1 13561 znleval 14141 hmeontr 14481 hmeoimaf1o 14482 subctctexmid 15491 exmidsbthrlem 15512 sbthomlem 15515 |
Copyright terms: Public domain | W3C validator |