| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ofo | GIF version | ||
| Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.) |
| Ref | Expression |
|---|---|
| f1ofo | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o3 5577 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ◡ccnv 4717 Fun wfun 5311 –onto→wfo 5315 –1-1-onto→wf1o 5316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 |
| This theorem is referenced by: f1imacnv 5588 f1ococnv2 5598 fo00 5608 isoini 5941 isoselem 5943 f1opw2 6210 f1dmex 6259 bren 6893 f1oeng 6906 en1 6949 mapen 7003 ssenen 7008 phplem4 7012 phplem4on 7025 dif1en 7037 fiintim 7089 fidcenumlemim 7115 supisolem 7171 ordiso2 7198 djuunr 7229 omct 7280 ctssexmid 7313 1fv 10331 hashfacen 11053 fsumf1o 11896 fisumss 11898 fprodf1o 12094 fprodssdc 12096 nninfct 12557 ennnfonelemrn 12985 ennnfonelemnn0 12988 ennnfonelemim 12990 exmidunben 12992 ctinfomlemom 12993 ctinfom 12994 qnnen 12997 enctlem 12998 ssomct 13011 xpsfrn 13378 imasmndf1 13482 imasgrpf1 13644 imasrngf1 13915 imasringf1 14023 znleval 14611 hmeontr 14981 hmeoimaf1o 14982 fsumdvdsmul 15659 subctctexmid 16325 domomsubct 16326 exmidsbthrlem 16349 sbthomlem 16352 |
| Copyright terms: Public domain | W3C validator |