| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ofo | GIF version | ||
| Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.) |
| Ref | Expression |
|---|---|
| f1ofo | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o3 5550 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ◡ccnv 4692 Fun wfun 5284 –onto→wfo 5288 –1-1-onto→wf1o 5289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 |
| This theorem is referenced by: f1imacnv 5561 f1ococnv2 5571 fo00 5581 isoini 5910 isoselem 5912 f1opw2 6175 f1dmex 6224 bren 6858 f1oeng 6871 en1 6914 mapen 6968 ssenen 6973 phplem4 6977 phplem4on 6990 dif1en 7002 fiintim 7054 fidcenumlemim 7080 supisolem 7136 ordiso2 7163 djuunr 7194 omct 7245 ctssexmid 7278 1fv 10296 hashfacen 11018 fsumf1o 11816 fisumss 11818 fprodf1o 12014 fprodssdc 12016 nninfct 12477 ennnfonelemrn 12905 ennnfonelemnn0 12908 ennnfonelemim 12910 exmidunben 12912 ctinfomlemom 12913 ctinfom 12914 qnnen 12917 enctlem 12918 ssomct 12931 xpsfrn 13297 imasmndf1 13401 imasgrpf1 13563 imasrngf1 13834 imasringf1 13942 znleval 14530 hmeontr 14900 hmeoimaf1o 14901 fsumdvdsmul 15578 subctctexmid 16139 domomsubct 16140 exmidsbthrlem 16163 sbthomlem 16166 |
| Copyright terms: Public domain | W3C validator |