Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ofo | GIF version |
Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.) |
Ref | Expression |
---|---|
f1ofo | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o3 5446 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ◡ccnv 4608 Fun wfun 5190 –onto→wfo 5194 –1-1-onto→wf1o 5195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 |
This theorem is referenced by: f1imacnv 5457 f1ococnv2 5467 fo00 5476 isoini 5794 isoselem 5796 f1opw2 6052 f1dmex 6092 bren 6721 f1oeng 6731 en1 6773 mapen 6820 ssenen 6825 phplem4 6829 phplem4on 6841 dif1en 6853 fiintim 6902 fidcenumlemim 6925 supisolem 6981 ordiso2 7008 djuunr 7039 omct 7090 ctssexmid 7122 1fv 10082 hashfacen 10758 fsumf1o 11340 fisumss 11342 fprodf1o 11538 fprodssdc 11540 ennnfonelemrn 12361 ennnfonelemnn0 12364 ennnfonelemim 12366 exmidunben 12368 ctinfomlemom 12369 ctinfom 12370 qnnen 12373 enctlem 12374 ssomct 12387 hmeontr 13066 hmeoimaf1o 13067 subctctexmid 13994 exmidsbthrlem 14014 sbthomlem 14017 |
Copyright terms: Public domain | W3C validator |