Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ofo | GIF version |
Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.) |
Ref | Expression |
---|---|
f1ofo | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o3 5437 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ◡ccnv 4602 Fun wfun 5181 –onto→wfo 5185 –1-1-onto→wf1o 5186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3121 df-ss 3128 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 |
This theorem is referenced by: f1imacnv 5448 f1ococnv2 5458 fo00 5467 isoini 5785 isoselem 5787 f1opw2 6043 f1dmex 6081 bren 6709 f1oeng 6719 en1 6761 mapen 6808 ssenen 6813 phplem4 6817 phplem4on 6829 dif1en 6841 fiintim 6890 fidcenumlemim 6913 supisolem 6969 ordiso2 6996 djuunr 7027 omct 7078 ctssexmid 7110 1fv 10070 hashfacen 10745 fsumf1o 11327 fisumss 11329 fprodf1o 11525 fprodssdc 11527 ennnfonelemrn 12348 ennnfonelemnn0 12351 ennnfonelemim 12353 exmidunben 12355 ctinfomlemom 12356 ctinfom 12357 qnnen 12360 enctlem 12361 ssomct 12374 hmeontr 12913 hmeoimaf1o 12914 subctctexmid 13841 exmidsbthrlem 13861 sbthomlem 13864 |
Copyright terms: Public domain | W3C validator |