Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ofo | GIF version |
Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.) |
Ref | Expression |
---|---|
f1ofo | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o3 5448 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ◡ccnv 4610 Fun wfun 5192 –onto→wfo 5196 –1-1-onto→wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 |
This theorem is referenced by: f1imacnv 5459 f1ococnv2 5469 fo00 5478 isoini 5797 isoselem 5799 f1opw2 6055 f1dmex 6095 bren 6725 f1oeng 6735 en1 6777 mapen 6824 ssenen 6829 phplem4 6833 phplem4on 6845 dif1en 6857 fiintim 6906 fidcenumlemim 6929 supisolem 6985 ordiso2 7012 djuunr 7043 omct 7094 ctssexmid 7126 1fv 10095 hashfacen 10771 fsumf1o 11353 fisumss 11355 fprodf1o 11551 fprodssdc 11553 ennnfonelemrn 12374 ennnfonelemnn0 12377 ennnfonelemim 12379 exmidunben 12381 ctinfomlemom 12382 ctinfom 12383 qnnen 12386 enctlem 12387 ssomct 12400 hmeontr 13107 hmeoimaf1o 13108 subctctexmid 14034 exmidsbthrlem 14054 sbthomlem 14057 |
Copyright terms: Public domain | W3C validator |