| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ofo | GIF version | ||
| Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.) |
| Ref | Expression |
|---|---|
| f1ofo | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o3 5513 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ◡ccnv 4663 Fun wfun 5253 –onto→wfo 5257 –1-1-onto→wf1o 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 |
| This theorem is referenced by: f1imacnv 5524 f1ococnv2 5534 fo00 5543 isoini 5868 isoselem 5870 f1opw2 6133 f1dmex 6182 bren 6815 f1oeng 6825 en1 6867 mapen 6916 ssenen 6921 phplem4 6925 phplem4on 6937 dif1en 6949 fiintim 7001 fidcenumlemim 7027 supisolem 7083 ordiso2 7110 djuunr 7141 omct 7192 ctssexmid 7225 1fv 10233 hashfacen 10947 fsumf1o 11574 fisumss 11576 fprodf1o 11772 fprodssdc 11774 nninfct 12235 ennnfonelemrn 12663 ennnfonelemnn0 12666 ennnfonelemim 12668 exmidunben 12670 ctinfomlemom 12671 ctinfom 12672 qnnen 12675 enctlem 12676 ssomct 12689 xpsfrn 13054 imasmndf1 13158 imasgrpf1 13320 imasrngf1 13591 imasringf1 13699 znleval 14287 hmeontr 14657 hmeoimaf1o 14658 fsumdvdsmul 15335 subctctexmid 15755 domomsubct 15756 exmidsbthrlem 15779 sbthomlem 15782 |
| Copyright terms: Public domain | W3C validator |