| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ofo | GIF version | ||
| Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.) |
| Ref | Expression |
|---|---|
| f1ofo | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o3 5528 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ◡ccnv 4674 Fun wfun 5265 –onto→wfo 5269 –1-1-onto→wf1o 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 |
| This theorem is referenced by: f1imacnv 5539 f1ococnv2 5549 fo00 5558 isoini 5887 isoselem 5889 f1opw2 6152 f1dmex 6201 bren 6835 f1oeng 6848 en1 6891 mapen 6943 ssenen 6948 phplem4 6952 phplem4on 6964 dif1en 6976 fiintim 7028 fidcenumlemim 7054 supisolem 7110 ordiso2 7137 djuunr 7168 omct 7219 ctssexmid 7252 1fv 10261 hashfacen 10981 fsumf1o 11701 fisumss 11703 fprodf1o 11899 fprodssdc 11901 nninfct 12362 ennnfonelemrn 12790 ennnfonelemnn0 12793 ennnfonelemim 12795 exmidunben 12797 ctinfomlemom 12798 ctinfom 12799 qnnen 12802 enctlem 12803 ssomct 12816 xpsfrn 13182 imasmndf1 13286 imasgrpf1 13448 imasrngf1 13719 imasringf1 13827 znleval 14415 hmeontr 14785 hmeoimaf1o 14786 fsumdvdsmul 15463 subctctexmid 15937 domomsubct 15938 exmidsbthrlem 15961 sbthomlem 15964 |
| Copyright terms: Public domain | W3C validator |