![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ofo | GIF version |
Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.) |
Ref | Expression |
---|---|
f1ofo | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o3 5507 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) | |
2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ◡ccnv 4659 Fun wfun 5249 –onto→wfo 5253 –1-1-onto→wf1o 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 |
This theorem is referenced by: f1imacnv 5518 f1ococnv2 5528 fo00 5537 isoini 5862 isoselem 5864 f1opw2 6126 f1dmex 6170 bren 6803 f1oeng 6813 en1 6855 mapen 6904 ssenen 6909 phplem4 6913 phplem4on 6925 dif1en 6937 fiintim 6987 fidcenumlemim 7013 supisolem 7069 ordiso2 7096 djuunr 7127 omct 7178 ctssexmid 7211 1fv 10208 hashfacen 10910 fsumf1o 11536 fisumss 11538 fprodf1o 11734 fprodssdc 11736 nninfct 12181 ennnfonelemrn 12579 ennnfonelemnn0 12582 ennnfonelemim 12584 exmidunben 12586 ctinfomlemom 12587 ctinfom 12588 qnnen 12591 enctlem 12592 ssomct 12605 xpsfrn 12936 imasgrpf1 13185 imasrngf1 13456 imasringf1 13564 znleval 14152 hmeontr 14492 hmeoimaf1o 14493 subctctexmid 15561 exmidsbthrlem 15582 sbthomlem 15585 |
Copyright terms: Public domain | W3C validator |