| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ofo | GIF version | ||
| Description: A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.) |
| Ref | Expression |
|---|---|
| f1ofo | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o3 5527 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ◡ccnv 4673 Fun wfun 5264 –onto→wfo 5268 –1-1-onto→wf1o 5269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 |
| This theorem is referenced by: f1imacnv 5538 f1ococnv2 5548 fo00 5557 isoini 5886 isoselem 5888 f1opw2 6151 f1dmex 6200 bren 6834 f1oeng 6847 en1 6890 mapen 6942 ssenen 6947 phplem4 6951 phplem4on 6963 dif1en 6975 fiintim 7027 fidcenumlemim 7053 supisolem 7109 ordiso2 7136 djuunr 7167 omct 7218 ctssexmid 7251 1fv 10260 hashfacen 10979 fsumf1o 11672 fisumss 11674 fprodf1o 11870 fprodssdc 11872 nninfct 12333 ennnfonelemrn 12761 ennnfonelemnn0 12764 ennnfonelemim 12766 exmidunben 12768 ctinfomlemom 12769 ctinfom 12770 qnnen 12773 enctlem 12774 ssomct 12787 xpsfrn 13153 imasmndf1 13257 imasgrpf1 13419 imasrngf1 13690 imasringf1 13798 znleval 14386 hmeontr 14756 hmeoimaf1o 14757 fsumdvdsmul 15434 subctctexmid 15899 domomsubct 15900 exmidsbthrlem 15923 sbthomlem 15926 |
| Copyright terms: Public domain | W3C validator |