| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oi | GIF version | ||
| Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| f1oi | ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresi 5440 | . 2 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
| 2 | cnvresid 5394 | . . . 4 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
| 3 | 2 | fneq1i 5414 | . . 3 ⊢ (◡( I ↾ 𝐴) Fn 𝐴 ↔ ( I ↾ 𝐴) Fn 𝐴) |
| 4 | 1, 3 | mpbir 146 | . 2 ⊢ ◡( I ↾ 𝐴) Fn 𝐴 |
| 5 | dff1o4 5579 | . 2 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ◡( I ↾ 𝐴) Fn 𝐴)) | |
| 6 | 1, 4, 5 | mpbir2an 948 | 1 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 |
| Colors of variables: wff set class |
| Syntax hints: I cid 4378 ◡ccnv 4717 ↾ cres 4720 Fn wfn 5312 –1-1-onto→wf1o 5316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 |
| This theorem is referenced by: f1ovi 5611 isoid 5933 enrefg 6913 ssdomg 6928 omp1eomlem 7257 ctm 7272 omct 7280 ctssexmid 7313 ssomct 13011 idmhm 13497 idghm 13791 ssidcn 14878 dvid 15363 dvidre 15365 dvexp 15379 ausgrusgrben 15960 subctctexmid 16325 |
| Copyright terms: Public domain | W3C validator |