ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oi GIF version

Theorem f1oi 5572
Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
f1oi ( I ↾ 𝐴):𝐴1-1-onto𝐴

Proof of Theorem f1oi
StepHypRef Expression
1 fnresi 5402 . 2 ( I ↾ 𝐴) Fn 𝐴
2 cnvresid 5356 . . . 4 ( I ↾ 𝐴) = ( I ↾ 𝐴)
32fneq1i 5376 . . 3 (( I ↾ 𝐴) Fn 𝐴 ↔ ( I ↾ 𝐴) Fn 𝐴)
41, 3mpbir 146 . 2 ( I ↾ 𝐴) Fn 𝐴
5 dff1o4 5541 . 2 (( I ↾ 𝐴):𝐴1-1-onto𝐴 ↔ (( I ↾ 𝐴) Fn 𝐴( I ↾ 𝐴) Fn 𝐴))
61, 4, 5mpbir2an 945 1 ( I ↾ 𝐴):𝐴1-1-onto𝐴
Colors of variables: wff set class
Syntax hints:   I cid 4342  ccnv 4681  cres 4684   Fn wfn 5274  1-1-ontowf1o 5278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-br 4051  df-opab 4113  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286
This theorem is referenced by:  f1ovi  5573  isoid  5891  enrefg  6867  ssdomg  6882  omp1eomlem  7210  ctm  7225  omct  7233  ctssexmid  7266  ssomct  12886  idmhm  13371  idghm  13665  ssidcn  14752  dvid  15237  dvidre  15239  dvexp  15253  subctctexmid  16072
  Copyright terms: Public domain W3C validator