![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mapsnf1o2 | GIF version |
Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | ⊢ 𝑆 = {𝑋} |
mapsncnv.b | ⊢ 𝐵 ∈ V |
mapsncnv.x | ⊢ 𝑋 ∈ V |
mapsncnv.f | ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) |
Ref | Expression |
---|---|
mapsnf1o2 | ⊢ 𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2623 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
3 | 1, 2 | fvex 5338 | . . 3 ⊢ (𝑥‘𝑋) ∈ V |
4 | mapsncnv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) | |
5 | 3, 4 | fnmpti 5155 | . 2 ⊢ 𝐹 Fn (𝐵 ↑𝑚 𝑆) |
6 | mapsncnv.s | . . . . 5 ⊢ 𝑆 = {𝑋} | |
7 | 2 | snex 4026 | . . . . 5 ⊢ {𝑋} ∈ V |
8 | 6, 7 | eqeltri 2161 | . . . 4 ⊢ 𝑆 ∈ V |
9 | vex 2623 | . . . . 5 ⊢ 𝑦 ∈ V | |
10 | 9 | snex 4026 | . . . 4 ⊢ {𝑦} ∈ V |
11 | 8, 10 | xpex 4566 | . . 3 ⊢ (𝑆 × {𝑦}) ∈ V |
12 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
13 | 6, 12, 2, 4 | mapsncnv 6466 | . . 3 ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
14 | 11, 13 | fnmpti 5155 | . 2 ⊢ ◡𝐹 Fn 𝐵 |
15 | dff1o4 5274 | . 2 ⊢ (𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 ↔ (𝐹 Fn (𝐵 ↑𝑚 𝑆) ∧ ◡𝐹 Fn 𝐵)) | |
16 | 5, 14, 15 | mpbir2an 889 | 1 ⊢ 𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1290 ∈ wcel 1439 Vcvv 2620 {csn 3450 ↦ cmpt 3905 × cxp 4450 ◡ccnv 4451 Fn wfn 5023 –1-1-onto→wf1o 5027 ‘cfv 5028 (class class class)co 5666 ↑𝑚 cmap 6419 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-ral 2365 df-rex 2366 df-reu 2367 df-v 2622 df-sbc 2842 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-mpt 3907 df-id 4129 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-f1 5033 df-fo 5034 df-f1o 5035 df-fv 5036 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-map 6421 |
This theorem is referenced by: mapsnf1o3 6468 |
Copyright terms: Public domain | W3C validator |