ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnf1o2 GIF version

Theorem mapsnf1o2 6752
Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s 𝑆 = {𝑋}
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
mapsncnv.f 𝐹 = (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋))
Assertion
Ref Expression
mapsnf1o2 𝐹:(𝐵𝑚 𝑆)–1-1-onto𝐵
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem mapsnf1o2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . 4 𝑥 ∈ V
2 mapsncnv.x . . . 4 𝑋 ∈ V
31, 2fvex 5575 . . 3 (𝑥𝑋) ∈ V
4 mapsncnv.f . . 3 𝐹 = (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋))
53, 4fnmpti 5383 . 2 𝐹 Fn (𝐵𝑚 𝑆)
6 mapsncnv.s . . . . 5 𝑆 = {𝑋}
72snex 4215 . . . . 5 {𝑋} ∈ V
86, 7eqeltri 2266 . . . 4 𝑆 ∈ V
9 vex 2763 . . . . 5 𝑦 ∈ V
109snex 4215 . . . 4 {𝑦} ∈ V
118, 10xpex 4775 . . 3 (𝑆 × {𝑦}) ∈ V
12 mapsncnv.b . . . 4 𝐵 ∈ V
136, 12, 2, 4mapsncnv 6751 . . 3 𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
1411, 13fnmpti 5383 . 2 𝐹 Fn 𝐵
15 dff1o4 5509 . 2 (𝐹:(𝐵𝑚 𝑆)–1-1-onto𝐵 ↔ (𝐹 Fn (𝐵𝑚 𝑆) ∧ 𝐹 Fn 𝐵))
165, 14, 15mpbir2an 944 1 𝐹:(𝐵𝑚 𝑆)–1-1-onto𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  Vcvv 2760  {csn 3619  cmpt 4091   × cxp 4658  ccnv 4659   Fn wfn 5250  1-1-ontowf1o 5254  cfv 5255  (class class class)co 5919  𝑚 cmap 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-map 6706
This theorem is referenced by:  mapsnf1o3  6753
  Copyright terms: Public domain W3C validator