Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapsnf1o2 | GIF version |
Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | ⊢ 𝑆 = {𝑋} |
mapsncnv.b | ⊢ 𝐵 ∈ V |
mapsncnv.x | ⊢ 𝑋 ∈ V |
mapsncnv.f | ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) |
Ref | Expression |
---|---|
mapsnf1o2 | ⊢ 𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
3 | 1, 2 | fvex 5516 | . . 3 ⊢ (𝑥‘𝑋) ∈ V |
4 | mapsncnv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) | |
5 | 3, 4 | fnmpti 5326 | . 2 ⊢ 𝐹 Fn (𝐵 ↑𝑚 𝑆) |
6 | mapsncnv.s | . . . . 5 ⊢ 𝑆 = {𝑋} | |
7 | 2 | snex 4171 | . . . . 5 ⊢ {𝑋} ∈ V |
8 | 6, 7 | eqeltri 2243 | . . . 4 ⊢ 𝑆 ∈ V |
9 | vex 2733 | . . . . 5 ⊢ 𝑦 ∈ V | |
10 | 9 | snex 4171 | . . . 4 ⊢ {𝑦} ∈ V |
11 | 8, 10 | xpex 4726 | . . 3 ⊢ (𝑆 × {𝑦}) ∈ V |
12 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
13 | 6, 12, 2, 4 | mapsncnv 6673 | . . 3 ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
14 | 11, 13 | fnmpti 5326 | . 2 ⊢ ◡𝐹 Fn 𝐵 |
15 | dff1o4 5450 | . 2 ⊢ (𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 ↔ (𝐹 Fn (𝐵 ↑𝑚 𝑆) ∧ ◡𝐹 Fn 𝐵)) | |
16 | 5, 14, 15 | mpbir2an 937 | 1 ⊢ 𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 Vcvv 2730 {csn 3583 ↦ cmpt 4050 × cxp 4609 ◡ccnv 4610 Fn wfn 5193 –1-1-onto→wf1o 5197 ‘cfv 5198 (class class class)co 5853 ↑𝑚 cmap 6626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-map 6628 |
This theorem is referenced by: mapsnf1o3 6675 |
Copyright terms: Public domain | W3C validator |