ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnf1o2 GIF version

Theorem mapsnf1o2 6670
Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s 𝑆 = {𝑋}
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
mapsncnv.f 𝐹 = (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋))
Assertion
Ref Expression
mapsnf1o2 𝐹:(𝐵𝑚 𝑆)–1-1-onto𝐵
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem mapsnf1o2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . 4 𝑥 ∈ V
2 mapsncnv.x . . . 4 𝑋 ∈ V
31, 2fvex 5514 . . 3 (𝑥𝑋) ∈ V
4 mapsncnv.f . . 3 𝐹 = (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋))
53, 4fnmpti 5324 . 2 𝐹 Fn (𝐵𝑚 𝑆)
6 mapsncnv.s . . . . 5 𝑆 = {𝑋}
72snex 4169 . . . . 5 {𝑋} ∈ V
86, 7eqeltri 2243 . . . 4 𝑆 ∈ V
9 vex 2733 . . . . 5 𝑦 ∈ V
109snex 4169 . . . 4 {𝑦} ∈ V
118, 10xpex 4724 . . 3 (𝑆 × {𝑦}) ∈ V
12 mapsncnv.b . . . 4 𝐵 ∈ V
136, 12, 2, 4mapsncnv 6669 . . 3 𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
1411, 13fnmpti 5324 . 2 𝐹 Fn 𝐵
15 dff1o4 5448 . 2 (𝐹:(𝐵𝑚 𝑆)–1-1-onto𝐵 ↔ (𝐹 Fn (𝐵𝑚 𝑆) ∧ 𝐹 Fn 𝐵))
165, 14, 15mpbir2an 937 1 𝐹:(𝐵𝑚 𝑆)–1-1-onto𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  Vcvv 2730  {csn 3581  cmpt 4048   × cxp 4607  ccnv 4608   Fn wfn 5191  1-1-ontowf1o 5195  cfv 5196  (class class class)co 5850  𝑚 cmap 6622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-map 6624
This theorem is referenced by:  mapsnf1o3  6671
  Copyright terms: Public domain W3C validator