Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapsnf1o2 | GIF version |
Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | ⊢ 𝑆 = {𝑋} |
mapsncnv.b | ⊢ 𝐵 ∈ V |
mapsncnv.x | ⊢ 𝑋 ∈ V |
mapsncnv.f | ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) |
Ref | Expression |
---|---|
mapsnf1o2 | ⊢ 𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
3 | 1, 2 | fvex 5506 | . . 3 ⊢ (𝑥‘𝑋) ∈ V |
4 | mapsncnv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) | |
5 | 3, 4 | fnmpti 5316 | . 2 ⊢ 𝐹 Fn (𝐵 ↑𝑚 𝑆) |
6 | mapsncnv.s | . . . . 5 ⊢ 𝑆 = {𝑋} | |
7 | 2 | snex 4164 | . . . . 5 ⊢ {𝑋} ∈ V |
8 | 6, 7 | eqeltri 2239 | . . . 4 ⊢ 𝑆 ∈ V |
9 | vex 2729 | . . . . 5 ⊢ 𝑦 ∈ V | |
10 | 9 | snex 4164 | . . . 4 ⊢ {𝑦} ∈ V |
11 | 8, 10 | xpex 4719 | . . 3 ⊢ (𝑆 × {𝑦}) ∈ V |
12 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
13 | 6, 12, 2, 4 | mapsncnv 6661 | . . 3 ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
14 | 11, 13 | fnmpti 5316 | . 2 ⊢ ◡𝐹 Fn 𝐵 |
15 | dff1o4 5440 | . 2 ⊢ (𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 ↔ (𝐹 Fn (𝐵 ↑𝑚 𝑆) ∧ ◡𝐹 Fn 𝐵)) | |
16 | 5, 14, 15 | mpbir2an 932 | 1 ⊢ 𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 Vcvv 2726 {csn 3576 ↦ cmpt 4043 × cxp 4602 ◡ccnv 4603 Fn wfn 5183 –1-1-onto→wf1o 5187 ‘cfv 5188 (class class class)co 5842 ↑𝑚 cmap 6614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-map 6616 |
This theorem is referenced by: mapsnf1o3 6663 |
Copyright terms: Public domain | W3C validator |