| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapsnf1o2 | GIF version | ||
| Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s | ⊢ 𝑆 = {𝑋} |
| mapsncnv.b | ⊢ 𝐵 ∈ V |
| mapsncnv.x | ⊢ 𝑋 ∈ V |
| mapsncnv.f | ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) |
| Ref | Expression |
|---|---|
| mapsnf1o2 | ⊢ 𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
| 3 | 1, 2 | fvex 5649 | . . 3 ⊢ (𝑥‘𝑋) ∈ V |
| 4 | mapsncnv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) | |
| 5 | 3, 4 | fnmpti 5452 | . 2 ⊢ 𝐹 Fn (𝐵 ↑𝑚 𝑆) |
| 6 | mapsncnv.s | . . . . 5 ⊢ 𝑆 = {𝑋} | |
| 7 | 2 | snex 4269 | . . . . 5 ⊢ {𝑋} ∈ V |
| 8 | 6, 7 | eqeltri 2302 | . . . 4 ⊢ 𝑆 ∈ V |
| 9 | vex 2802 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 10 | 9 | snex 4269 | . . . 4 ⊢ {𝑦} ∈ V |
| 11 | 8, 10 | xpex 4834 | . . 3 ⊢ (𝑆 × {𝑦}) ∈ V |
| 12 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
| 13 | 6, 12, 2, 4 | mapsncnv 6850 | . . 3 ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
| 14 | 11, 13 | fnmpti 5452 | . 2 ⊢ ◡𝐹 Fn 𝐵 |
| 15 | dff1o4 5582 | . 2 ⊢ (𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 ↔ (𝐹 Fn (𝐵 ↑𝑚 𝑆) ∧ ◡𝐹 Fn 𝐵)) | |
| 16 | 5, 14, 15 | mpbir2an 948 | 1 ⊢ 𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 Vcvv 2799 {csn 3666 ↦ cmpt 4145 × cxp 4717 ◡ccnv 4718 Fn wfn 5313 –1-1-onto→wf1o 5317 ‘cfv 5318 (class class class)co 6007 ↑𝑚 cmap 6803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-map 6805 |
| This theorem is referenced by: mapsnf1o3 6852 |
| Copyright terms: Public domain | W3C validator |