| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapsnf1o2 | GIF version | ||
| Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s | ⊢ 𝑆 = {𝑋} |
| mapsncnv.b | ⊢ 𝐵 ∈ V |
| mapsncnv.x | ⊢ 𝑋 ∈ V |
| mapsncnv.f | ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) |
| Ref | Expression |
|---|---|
| mapsnf1o2 | ⊢ 𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
| 3 | 1, 2 | fvex 5603 | . . 3 ⊢ (𝑥‘𝑋) ∈ V |
| 4 | mapsncnv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) | |
| 5 | 3, 4 | fnmpti 5410 | . 2 ⊢ 𝐹 Fn (𝐵 ↑𝑚 𝑆) |
| 6 | mapsncnv.s | . . . . 5 ⊢ 𝑆 = {𝑋} | |
| 7 | 2 | snex 4233 | . . . . 5 ⊢ {𝑋} ∈ V |
| 8 | 6, 7 | eqeltri 2279 | . . . 4 ⊢ 𝑆 ∈ V |
| 9 | vex 2776 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 10 | 9 | snex 4233 | . . . 4 ⊢ {𝑦} ∈ V |
| 11 | 8, 10 | xpex 4794 | . . 3 ⊢ (𝑆 × {𝑦}) ∈ V |
| 12 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
| 13 | 6, 12, 2, 4 | mapsncnv 6789 | . . 3 ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
| 14 | 11, 13 | fnmpti 5410 | . 2 ⊢ ◡𝐹 Fn 𝐵 |
| 15 | dff1o4 5537 | . 2 ⊢ (𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 ↔ (𝐹 Fn (𝐵 ↑𝑚 𝑆) ∧ ◡𝐹 Fn 𝐵)) | |
| 16 | 5, 14, 15 | mpbir2an 945 | 1 ⊢ 𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 Vcvv 2773 {csn 3634 ↦ cmpt 4109 × cxp 4677 ◡ccnv 4678 Fn wfn 5271 –1-1-onto→wf1o 5275 ‘cfv 5276 (class class class)co 5951 ↑𝑚 cmap 6742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-map 6744 |
| This theorem is referenced by: mapsnf1o3 6791 |
| Copyright terms: Public domain | W3C validator |