| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapsnf1o2 | GIF version | ||
| Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s | ⊢ 𝑆 = {𝑋} |
| mapsncnv.b | ⊢ 𝐵 ∈ V |
| mapsncnv.x | ⊢ 𝑋 ∈ V |
| mapsncnv.f | ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) |
| Ref | Expression |
|---|---|
| mapsnf1o2 | ⊢ 𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
| 3 | 1, 2 | fvex 5581 | . . 3 ⊢ (𝑥‘𝑋) ∈ V |
| 4 | mapsncnv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) | |
| 5 | 3, 4 | fnmpti 5389 | . 2 ⊢ 𝐹 Fn (𝐵 ↑𝑚 𝑆) |
| 6 | mapsncnv.s | . . . . 5 ⊢ 𝑆 = {𝑋} | |
| 7 | 2 | snex 4219 | . . . . 5 ⊢ {𝑋} ∈ V |
| 8 | 6, 7 | eqeltri 2269 | . . . 4 ⊢ 𝑆 ∈ V |
| 9 | vex 2766 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 10 | 9 | snex 4219 | . . . 4 ⊢ {𝑦} ∈ V |
| 11 | 8, 10 | xpex 4779 | . . 3 ⊢ (𝑆 × {𝑦}) ∈ V |
| 12 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
| 13 | 6, 12, 2, 4 | mapsncnv 6763 | . . 3 ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
| 14 | 11, 13 | fnmpti 5389 | . 2 ⊢ ◡𝐹 Fn 𝐵 |
| 15 | dff1o4 5515 | . 2 ⊢ (𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 ↔ (𝐹 Fn (𝐵 ↑𝑚 𝑆) ∧ ◡𝐹 Fn 𝐵)) | |
| 16 | 5, 14, 15 | mpbir2an 944 | 1 ⊢ 𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3623 ↦ cmpt 4095 × cxp 4662 ◡ccnv 4663 Fn wfn 5254 –1-1-onto→wf1o 5258 ‘cfv 5259 (class class class)co 5925 ↑𝑚 cmap 6716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-map 6718 |
| This theorem is referenced by: mapsnf1o3 6765 |
| Copyright terms: Public domain | W3C validator |