ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmf1o GIF version

Theorem mhmf1o 12697
Description: A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019.)
Hypotheses
Ref Expression
mhmf1o.b 𝐵 = (Base‘𝑅)
mhmf1o.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
mhmf1o (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 MndHom 𝑅)))

Proof of Theorem mhmf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 12691 . . . . 5 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑆 ∈ Mnd)
2 mhmrcl1 12690 . . . . 5 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑅 ∈ Mnd)
31, 2jca 304 . . . 4 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd))
43adantr 274 . . 3 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd))
5 f1ocnv 5458 . . . . . 6 (𝐹:𝐵1-1-onto𝐶𝐹:𝐶1-1-onto𝐵)
65adantl 275 . . . . 5 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐶1-1-onto𝐵)
7 f1of 5445 . . . . 5 (𝐹:𝐶1-1-onto𝐵𝐹:𝐶𝐵)
86, 7syl 14 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐶𝐵)
9 simpll 525 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹 ∈ (𝑅 MndHom 𝑆))
108adantr 274 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹:𝐶𝐵)
11 simprl 527 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑥𝐶)
1210, 11ffvelrnd 5636 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹𝑥) ∈ 𝐵)
13 simprr 528 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑦𝐶)
1410, 13ffvelrnd 5636 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹𝑦) ∈ 𝐵)
15 mhmf1o.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
16 eqid 2171 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
17 eqid 2171 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
1815, 16, 17mhmlin 12694 . . . . . . . 8 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (𝐹𝑥) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))))
199, 12, 14, 18syl3anc 1234 . . . . . . 7 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))))
20 simpr 109 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐵1-1-onto𝐶)
2120adantr 274 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹:𝐵1-1-onto𝐶)
22 f1ocnvfv2 5761 . . . . . . . . 9 ((𝐹:𝐵1-1-onto𝐶𝑥𝐶) → (𝐹‘(𝐹𝑥)) = 𝑥)
2321, 11, 22syl2anc 409 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝐹𝑥)) = 𝑥)
24 f1ocnvfv2 5761 . . . . . . . . 9 ((𝐹:𝐵1-1-onto𝐶𝑦𝐶) → (𝐹‘(𝐹𝑦)) = 𝑦)
2521, 13, 24syl2anc 409 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝐹𝑦)) = 𝑦)
2623, 25oveq12d 5875 . . . . . . 7 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(+g𝑆)𝑦))
2719, 26eqtrd 2204 . . . . . 6 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦))
282adantr 274 . . . . . . . . 9 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝑅 ∈ Mnd)
2928adantr 274 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑅 ∈ Mnd)
3015, 16mndcl 12663 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (𝐹𝑥) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵)
3129, 12, 14, 30syl3anc 1234 . . . . . . 7 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵)
32 f1ocnvfv 5762 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐶 ∧ ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵) → ((𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦))))
3321, 31, 32syl2anc 409 . . . . . 6 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦))))
3427, 33mpd 13 . . . . 5 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
3534ralrimivva 2553 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
36 eqid 2171 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
37 eqid 2171 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
3836, 37mhm0 12695 . . . . . . . 8 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
3938adantr 274 . . . . . . 7 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹‘(0g𝑅)) = (0g𝑆))
4039eqcomd 2177 . . . . . 6 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (0g𝑆) = (𝐹‘(0g𝑅)))
4140fveq2d 5503 . . . . 5 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹‘(0g𝑆)) = (𝐹‘(𝐹‘(0g𝑅))))
4215, 36mndidcl 12670 . . . . . . . 8 (𝑅 ∈ Mnd → (0g𝑅) ∈ 𝐵)
432, 42syl 14 . . . . . . 7 (𝐹 ∈ (𝑅 MndHom 𝑆) → (0g𝑅) ∈ 𝐵)
4443adantr 274 . . . . . 6 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (0g𝑅) ∈ 𝐵)
45 f1ocnvfv1 5760 . . . . . 6 ((𝐹:𝐵1-1-onto𝐶 ∧ (0g𝑅) ∈ 𝐵) → (𝐹‘(𝐹‘(0g𝑅))) = (0g𝑅))
4620, 44, 45syl2anc 409 . . . . 5 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹‘(𝐹‘(0g𝑅))) = (0g𝑅))
4741, 46eqtrd 2204 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹‘(0g𝑆)) = (0g𝑅))
488, 35, 473jca 1173 . . 3 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹:𝐶𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑅)))
49 mhmf1o.c . . . 4 𝐶 = (Base‘𝑆)
5049, 15, 17, 16, 37, 36ismhm 12689 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑅) ↔ ((𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ (𝐹:𝐶𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑅))))
514, 48, 50sylanbrc 415 . 2 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 MndHom 𝑅))
5215, 49mhmf 12692 . . . . 5 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹:𝐵𝐶)
5352adantr 274 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹:𝐵𝐶)
5453ffnd 5350 . . 3 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹 Fn 𝐵)
5549, 15mhmf 12692 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑅) → 𝐹:𝐶𝐵)
5655adantl 275 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹:𝐶𝐵)
5756ffnd 5350 . . 3 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹 Fn 𝐶)
58 dff1o4 5453 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹 Fn 𝐵𝐹 Fn 𝐶))
5954, 57, 58sylanbrc 415 . 2 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹:𝐵1-1-onto𝐶)
6051, 59impbida 592 1 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 MndHom 𝑅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 974   = wceq 1349  wcel 2142  wral 2449  ccnv 4611   Fn wfn 5195  wf 5196  1-1-ontowf1o 5199  cfv 5200  (class class class)co 5857  Basecbs 12420  +gcplusg 12484  0gc0g 12600  Mndcmnd 12656   MndHom cmhm 12685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-sep 4108  ax-pow 4161  ax-pr 4195  ax-un 4419  ax-setind 4522  ax-cnex 7869  ax-resscn 7870  ax-1re 7872  ax-addrcl 7875
This theorem depends on definitions:  df-bi 116  df-3an 976  df-tru 1352  df-fal 1355  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ne 2342  df-ral 2454  df-rex 2455  df-reu 2456  df-rmo 2457  df-rab 2458  df-v 2733  df-sbc 2957  df-csb 3051  df-dif 3124  df-un 3126  df-in 3128  df-ss 3135  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-iun 3876  df-br 3991  df-opab 4052  df-mpt 4053  df-id 4279  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-rn 4623  df-res 4624  df-ima 4625  df-iota 5162  df-fun 5202  df-fn 5203  df-f 5204  df-f1 5205  df-fo 5206  df-f1o 5207  df-fv 5208  df-riota 5813  df-ov 5860  df-oprab 5861  df-mpo 5862  df-1st 6123  df-2nd 6124  df-map 6632  df-inn 8883  df-2 8941  df-ndx 12423  df-slot 12424  df-base 12426  df-plusg 12497  df-0g 12602  df-mgm 12614  df-sgrp 12647  df-mnd 12657  df-mhm 12687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator