| Step | Hyp | Ref
| Expression |
| 1 | | mhmrcl2 13096 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑆 ∈ Mnd) |
| 2 | | mhmrcl1 13095 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑅 ∈ Mnd) |
| 3 | 1, 2 | jca 306 |
. . . 4
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd)) |
| 4 | 3 | adantr 276 |
. . 3
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd)) |
| 5 | | f1ocnv 5517 |
. . . . . 6
⊢ (𝐹:𝐵–1-1-onto→𝐶 → ◡𝐹:𝐶–1-1-onto→𝐵) |
| 6 | 5 | adantl 277 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹:𝐶–1-1-onto→𝐵) |
| 7 | | f1of 5504 |
. . . . 5
⊢ (◡𝐹:𝐶–1-1-onto→𝐵 → ◡𝐹:𝐶⟶𝐵) |
| 8 | 6, 7 | syl 14 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹:𝐶⟶𝐵) |
| 9 | | simpll 527 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝐹 ∈ (𝑅 MndHom 𝑆)) |
| 10 | 8 | adantr 276 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ◡𝐹:𝐶⟶𝐵) |
| 11 | | simprl 529 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝑥 ∈ 𝐶) |
| 12 | 10, 11 | ffvelcdmd 5698 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (◡𝐹‘𝑥) ∈ 𝐵) |
| 13 | | simprr 531 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝑦 ∈ 𝐶) |
| 14 | 10, 13 | ffvelcdmd 5698 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (◡𝐹‘𝑦) ∈ 𝐵) |
| 15 | | mhmf1o.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑅) |
| 16 | | eqid 2196 |
. . . . . . . . 9
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 17 | | eqid 2196 |
. . . . . . . . 9
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 18 | 15, 16, 17 | mhmlin 13099 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (◡𝐹‘𝑥) ∈ 𝐵 ∧ (◡𝐹‘𝑦) ∈ 𝐵) → (𝐹‘((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦))) = ((𝐹‘(◡𝐹‘𝑥))(+g‘𝑆)(𝐹‘(◡𝐹‘𝑦)))) |
| 19 | 9, 12, 14, 18 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝐹‘((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦))) = ((𝐹‘(◡𝐹‘𝑥))(+g‘𝑆)(𝐹‘(◡𝐹‘𝑦)))) |
| 20 | | simpr 110 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝐹:𝐵–1-1-onto→𝐶) |
| 21 | 20 | adantr 276 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝐹:𝐵–1-1-onto→𝐶) |
| 22 | | f1ocnvfv2 5825 |
. . . . . . . . 9
⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝑥 ∈ 𝐶) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
| 23 | 21, 11, 22 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
| 24 | | f1ocnvfv2 5825 |
. . . . . . . . 9
⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝑦 ∈ 𝐶) → (𝐹‘(◡𝐹‘𝑦)) = 𝑦) |
| 25 | 21, 13, 24 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝐹‘(◡𝐹‘𝑦)) = 𝑦) |
| 26 | 23, 25 | oveq12d 5940 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐹‘(◡𝐹‘𝑥))(+g‘𝑆)(𝐹‘(◡𝐹‘𝑦))) = (𝑥(+g‘𝑆)𝑦)) |
| 27 | 19, 26 | eqtrd 2229 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝐹‘((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦))) = (𝑥(+g‘𝑆)𝑦)) |
| 28 | 2 | adantr 276 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝑅 ∈ Mnd) |
| 29 | 28 | adantr 276 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝑅 ∈ Mnd) |
| 30 | 15, 16 | mndcl 13064 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ (◡𝐹‘𝑥) ∈ 𝐵 ∧ (◡𝐹‘𝑦) ∈ 𝐵) → ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦)) ∈ 𝐵) |
| 31 | 29, 12, 14, 30 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦)) ∈ 𝐵) |
| 32 | | f1ocnvfv 5826 |
. . . . . . 7
⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦)) ∈ 𝐵) → ((𝐹‘((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦))) = (𝑥(+g‘𝑆)𝑦) → (◡𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦)))) |
| 33 | 21, 31, 32 | syl2anc 411 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐹‘((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦))) = (𝑥(+g‘𝑆)𝑦) → (◡𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦)))) |
| 34 | 27, 33 | mpd 13 |
. . . . 5
⊢ (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (◡𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦))) |
| 35 | 34 | ralrimivva 2579 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (◡𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦))) |
| 36 | | eqid 2196 |
. . . . . . . . 9
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 37 | | eqid 2196 |
. . . . . . . . 9
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 38 | 36, 37 | mhm0 13100 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
| 39 | 38 | adantr 276 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
| 40 | 39 | eqcomd 2202 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) →
(0g‘𝑆) =
(𝐹‘(0g‘𝑅))) |
| 41 | 40 | fveq2d 5562 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (◡𝐹‘(0g‘𝑆)) = (◡𝐹‘(𝐹‘(0g‘𝑅)))) |
| 42 | 15, 36 | mndidcl 13071 |
. . . . . . . 8
⊢ (𝑅 ∈ Mnd →
(0g‘𝑅)
∈ 𝐵) |
| 43 | 2, 42 | syl 14 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → (0g‘𝑅) ∈ 𝐵) |
| 44 | 43 | adantr 276 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) →
(0g‘𝑅)
∈ 𝐵) |
| 45 | | f1ocnvfv1 5824 |
. . . . . 6
⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧
(0g‘𝑅)
∈ 𝐵) → (◡𝐹‘(𝐹‘(0g‘𝑅))) = (0g‘𝑅)) |
| 46 | 20, 44, 45 | syl2anc 411 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (◡𝐹‘(𝐹‘(0g‘𝑅))) = (0g‘𝑅)) |
| 47 | 41, 46 | eqtrd 2229 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (◡𝐹‘(0g‘𝑆)) = (0g‘𝑅)) |
| 48 | 8, 35, 47 | 3jca 1179 |
. . 3
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (◡𝐹:𝐶⟶𝐵 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (◡𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦)) ∧ (◡𝐹‘(0g‘𝑆)) = (0g‘𝑅))) |
| 49 | | mhmf1o.c |
. . . 4
⊢ 𝐶 = (Base‘𝑆) |
| 50 | 49, 15, 17, 16, 37, 36 | ismhm 13093 |
. . 3
⊢ (◡𝐹 ∈ (𝑆 MndHom 𝑅) ↔ ((𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ (◡𝐹:𝐶⟶𝐵 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (◡𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦)) ∧ (◡𝐹‘(0g‘𝑆)) = (0g‘𝑅)))) |
| 51 | 4, 48, 50 | sylanbrc 417 |
. 2
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹 ∈ (𝑆 MndHom 𝑅)) |
| 52 | 15, 49 | mhmf 13097 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹:𝐵⟶𝐶) |
| 53 | 52 | adantr 276 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹:𝐵⟶𝐶) |
| 54 | 53 | ffnd 5408 |
. . 3
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹 Fn 𝐵) |
| 55 | 49, 15 | mhmf 13097 |
. . . . 5
⊢ (◡𝐹 ∈ (𝑆 MndHom 𝑅) → ◡𝐹:𝐶⟶𝐵) |
| 56 | 55 | adantl 277 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 MndHom 𝑅)) → ◡𝐹:𝐶⟶𝐵) |
| 57 | 56 | ffnd 5408 |
. . 3
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 MndHom 𝑅)) → ◡𝐹 Fn 𝐶) |
| 58 | | dff1o4 5512 |
. . 3
⊢ (𝐹:𝐵–1-1-onto→𝐶 ↔ (𝐹 Fn 𝐵 ∧ ◡𝐹 Fn 𝐶)) |
| 59 | 54, 57, 58 | sylanbrc 417 |
. 2
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹:𝐵–1-1-onto→𝐶) |
| 60 | 51, 59 | impbida 596 |
1
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 MndHom 𝑅))) |