![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpinvf1o | GIF version |
Description: The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpinv11.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
grpinvf1o | ⊢ (𝜑 → 𝑁:𝐵–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinv11.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grpinvinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpinvinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
4 | 2, 3 | grpinvf 13122 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
5 | 1, 4 | syl 14 | . . 3 ⊢ (𝜑 → 𝑁:𝐵⟶𝐵) |
6 | 5 | ffnd 5405 | . 2 ⊢ (𝜑 → 𝑁 Fn 𝐵) |
7 | 2, 3 | grpinvcnv 13143 | . . . . 5 ⊢ (𝐺 ∈ Grp → ◡𝑁 = 𝑁) |
8 | 1, 7 | syl 14 | . . . 4 ⊢ (𝜑 → ◡𝑁 = 𝑁) |
9 | 8 | fneq1d 5345 | . . 3 ⊢ (𝜑 → (◡𝑁 Fn 𝐵 ↔ 𝑁 Fn 𝐵)) |
10 | 6, 9 | mpbird 167 | . 2 ⊢ (𝜑 → ◡𝑁 Fn 𝐵) |
11 | dff1o4 5509 | . 2 ⊢ (𝑁:𝐵–1-1-onto→𝐵 ↔ (𝑁 Fn 𝐵 ∧ ◡𝑁 Fn 𝐵)) | |
12 | 6, 10, 11 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝑁:𝐵–1-1-onto→𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ◡ccnv 4659 Fn wfn 5250 ⟶wf 5251 –1-1-onto→wf1o 5254 ‘cfv 5255 Basecbs 12621 Grpcgrp 13075 invgcminusg 13076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-inn 8985 df-2 9043 df-ndx 12624 df-slot 12625 df-base 12627 df-plusg 12711 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |