ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pr2nelem GIF version

Theorem pr2nelem 7147
Description: Lemma for pr2ne 7148. (Contributed by FL, 17-Aug-2008.)
Assertion
Ref Expression
pr2nelem ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem pr2nelem
StepHypRef Expression
1 disjsn2 3639 . . 3 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
2 ensn1g 6763 . . . . 5 (𝐴𝐶 → {𝐴} ≈ 1o)
3 ensn1g 6763 . . . . 5 (𝐵𝐷 → {𝐵} ≈ 1o)
4 pm54.43 7146 . . . . . . 7 (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ ↔ ({𝐴} ∪ {𝐵}) ≈ 2o))
5 df-pr 3583 . . . . . . . 8 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
65breq1i 3989 . . . . . . 7 ({𝐴, 𝐵} ≈ 2o ↔ ({𝐴} ∪ {𝐵}) ≈ 2o)
74, 6bitr4di 197 . . . . . 6 (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ ↔ {𝐴, 𝐵} ≈ 2o))
87biimpd 143 . . . . 5 (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o))
92, 3, 8syl2an 287 . . . 4 ((𝐴𝐶𝐵𝐷) → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o))
109ex 114 . . 3 (𝐴𝐶 → (𝐵𝐷 → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o)))
111, 10syl7 69 . 2 (𝐴𝐶 → (𝐵𝐷 → (𝐴𝐵 → {𝐴, 𝐵} ≈ 2o)))
12113imp 1183 1 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  wne 2336  cun 3114  cin 3115  c0 3409  {csn 3576  {cpr 3577   class class class wbr 3982  1oc1o 6377  2oc2o 6378  cen 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1o 6384  df-2o 6385  df-er 6501  df-en 6707
This theorem is referenced by:  pr2ne  7148
  Copyright terms: Public domain W3C validator