ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funprg GIF version

Theorem funprg 5308
Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.)
Assertion
Ref Expression
funprg (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})

Proof of Theorem funprg
StepHypRef Expression
1 simp1l 1023 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → 𝐴𝑉)
2 simp2l 1025 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → 𝐶𝑋)
3 funsng 5304 . . . 4 ((𝐴𝑉𝐶𝑋) → Fun {⟨𝐴, 𝐶⟩})
41, 2, 3syl2anc 411 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → Fun {⟨𝐴, 𝐶⟩})
5 simp1r 1024 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → 𝐵𝑊)
6 simp2r 1026 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → 𝐷𝑌)
7 funsng 5304 . . . 4 ((𝐵𝑊𝐷𝑌) → Fun {⟨𝐵, 𝐷⟩})
85, 6, 7syl2anc 411 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → Fun {⟨𝐵, 𝐷⟩})
9 dmsnopg 5141 . . . . . 6 (𝐶𝑋 → dom {⟨𝐴, 𝐶⟩} = {𝐴})
102, 9syl 14 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → dom {⟨𝐴, 𝐶⟩} = {𝐴})
11 dmsnopg 5141 . . . . . 6 (𝐷𝑌 → dom {⟨𝐵, 𝐷⟩} = {𝐵})
126, 11syl 14 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → dom {⟨𝐵, 𝐷⟩} = {𝐵})
1310, 12ineq12d 3365 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ({𝐴} ∩ {𝐵}))
14 disjsn2 3685 . . . . 5 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
15143ad2ant3 1022 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → ({𝐴} ∩ {𝐵}) = ∅)
1613, 15eqtrd 2229 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ∅)
17 funun 5302 . . 3 (((Fun {⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩}) ∧ (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ∅) → Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}))
184, 8, 16, 17syl21anc 1248 . 2 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}))
19 df-pr 3629 . . 3 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
2019funeqi 5279 . 2 (Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ↔ Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}))
2118, 20sylibr 134 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wne 2367  cun 3155  cin 3156  c0 3450  {csn 3622  {cpr 3623  cop 3625  dom cdm 4663  Fun wfun 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-fun 5260
This theorem is referenced by:  funtpg  5309  funpr  5310  fnprg  5313  2strbasg  12797  2stropg  12798
  Copyright terms: Public domain W3C validator