Step | Hyp | Ref
| Expression |
1 | | simp1l 1021 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑉) |
2 | | simp2l 1023 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → 𝐶 ∈ 𝑋) |
3 | | funsng 5264 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) → Fun {⟨𝐴, 𝐶⟩}) |
4 | 1, 2, 3 | syl2anc 411 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {⟨𝐴, 𝐶⟩}) |
5 | | simp1r 1022 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑊) |
6 | | simp2r 1024 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → 𝐷 ∈ 𝑌) |
7 | | funsng 5264 |
. . . 4
⊢ ((𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌) → Fun {⟨𝐵, 𝐷⟩}) |
8 | 5, 6, 7 | syl2anc 411 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {⟨𝐵, 𝐷⟩}) |
9 | | dmsnopg 5102 |
. . . . . 6
⊢ (𝐶 ∈ 𝑋 → dom {⟨𝐴, 𝐶⟩} = {𝐴}) |
10 | 2, 9 | syl 14 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → dom {⟨𝐴, 𝐶⟩} = {𝐴}) |
11 | | dmsnopg 5102 |
. . . . . 6
⊢ (𝐷 ∈ 𝑌 → dom {⟨𝐵, 𝐷⟩} = {𝐵}) |
12 | 6, 11 | syl 14 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → dom {⟨𝐵, 𝐷⟩} = {𝐵}) |
13 | 10, 12 | ineq12d 3339 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ({𝐴} ∩ {𝐵})) |
14 | | disjsn2 3657 |
. . . . 5
⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
15 | 14 | 3ad2ant3 1020 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → ({𝐴} ∩ {𝐵}) = ∅) |
16 | 13, 15 | eqtrd 2210 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ∅) |
17 | | funun 5262 |
. . 3
⊢ (((Fun
{⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩}) ∧ (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ∅) → Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})) |
18 | 4, 8, 16, 17 | syl21anc 1237 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})) |
19 | | df-pr 3601 |
. . 3
⊢
{⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) |
20 | 19 | funeqi 5239 |
. 2
⊢ (Fun
{⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ↔ Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})) |
21 | 18, 20 | sylibr 134 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}) |