Proof of Theorem funprg
| Step | Hyp | Ref
| Expression |
| 1 | | simp1l 1023 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑉) |
| 2 | | simp2l 1025 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → 𝐶 ∈ 𝑋) |
| 3 | | funsng 5304 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) → Fun {〈𝐴, 𝐶〉}) |
| 4 | 1, 2, 3 | syl2anc 411 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉}) |
| 5 | | simp1r 1024 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑊) |
| 6 | | simp2r 1026 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → 𝐷 ∈ 𝑌) |
| 7 | | funsng 5304 |
. . . 4
⊢ ((𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌) → Fun {〈𝐵, 𝐷〉}) |
| 8 | 5, 6, 7 | syl2anc 411 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐵, 𝐷〉}) |
| 9 | | dmsnopg 5141 |
. . . . . 6
⊢ (𝐶 ∈ 𝑋 → dom {〈𝐴, 𝐶〉} = {𝐴}) |
| 10 | 2, 9 | syl 14 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → dom {〈𝐴, 𝐶〉} = {𝐴}) |
| 11 | | dmsnopg 5141 |
. . . . . 6
⊢ (𝐷 ∈ 𝑌 → dom {〈𝐵, 𝐷〉} = {𝐵}) |
| 12 | 6, 11 | syl 14 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → dom {〈𝐵, 𝐷〉} = {𝐵}) |
| 13 | 10, 12 | ineq12d 3365 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ({𝐴} ∩ {𝐵})) |
| 14 | | disjsn2 3685 |
. . . . 5
⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
| 15 | 14 | 3ad2ant3 1022 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → ({𝐴} ∩ {𝐵}) = ∅) |
| 16 | 13, 15 | eqtrd 2229 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ∅) |
| 17 | | funun 5302 |
. . 3
⊢ (((Fun
{〈𝐴, 𝐶〉} ∧ Fun {〈𝐵, 𝐷〉}) ∧ (dom {〈𝐴, 𝐶〉} ∩ dom {〈𝐵, 𝐷〉}) = ∅) → Fun ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) |
| 18 | 4, 8, 16, 17 | syl21anc 1248 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) |
| 19 | | df-pr 3629 |
. . 3
⊢
{〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) |
| 20 | 19 | funeqi 5279 |
. 2
⊢ (Fun
{〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ↔ Fun ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) |
| 21 | 18, 20 | sylibr 134 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |