| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prfidisj | GIF version | ||
| Description: A pair is finite if it consists of two unequal sets. For the case where 𝐴 = 𝐵, see snfig 6891. For the cases where one or both is a proper class, see prprc1 3740, prprc2 3741, or prprc 3742. (Contributed by Jim Kingdon, 31-May-2022.) |
| Ref | Expression |
|---|---|
| prfidisj | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3639 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 2 | snfig 6891 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) | |
| 3 | snfig 6891 | . . 3 ⊢ (𝐵 ∈ 𝑊 → {𝐵} ∈ Fin) | |
| 4 | disjsn2 3695 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
| 5 | unfidisj 7001 | . . 3 ⊢ (({𝐴} ∈ Fin ∧ {𝐵} ∈ Fin ∧ ({𝐴} ∩ {𝐵}) = ∅) → ({𝐴} ∪ {𝐵}) ∈ Fin) | |
| 6 | 2, 3, 4, 5 | syl3an 1291 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴} ∪ {𝐵}) ∈ Fin) |
| 7 | 1, 6 | eqeltrid 2291 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 ∪ cun 3163 ∩ cin 3164 ∅c0 3459 {csn 3632 {cpr 3633 Fincfn 6817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-1o 6492 df-er 6610 df-en 6818 df-fin 6820 |
| This theorem is referenced by: prfidceq 7007 tpfidisj 7008 fiprsshashgt1 10943 sumpr 11643 |
| Copyright terms: Public domain | W3C validator |