Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prfidisj | GIF version |
Description: A pair is finite if it consists of two unequal sets. For the case where 𝐴 = 𝐵, see snfig 6804. For the cases where one or both is a proper class, see prprc1 3697, prprc2 3698, or prprc 3699. (Contributed by Jim Kingdon, 31-May-2022.) |
Ref | Expression |
---|---|
prfidisj | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 3596 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | snfig 6804 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) | |
3 | snfig 6804 | . . 3 ⊢ (𝐵 ∈ 𝑊 → {𝐵} ∈ Fin) | |
4 | disjsn2 3652 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
5 | unfidisj 6911 | . . 3 ⊢ (({𝐴} ∈ Fin ∧ {𝐵} ∈ Fin ∧ ({𝐴} ∩ {𝐵}) = ∅) → ({𝐴} ∪ {𝐵}) ∈ Fin) | |
6 | 2, 3, 4, 5 | syl3an 1280 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴} ∪ {𝐵}) ∈ Fin) |
7 | 1, 6 | eqeltrid 2262 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 = wceq 1353 ∈ wcel 2146 ≠ wne 2345 ∪ cun 3125 ∩ cin 3126 ∅c0 3420 {csn 3589 {cpr 3590 Fincfn 6730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-1o 6407 df-er 6525 df-en 6731 df-fin 6733 |
This theorem is referenced by: tpfidisj 6917 fiprsshashgt1 10765 sumpr 11389 |
Copyright terms: Public domain | W3C validator |