ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclnq GIF version

Theorem mulclnq 7531
Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.)
Assertion
Ref Expression
mulclnq ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ Q)

Proof of Theorem mulclnq
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7503 . . 3 Q = ((N × N) / ~Q )
2 oveq1 5981 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = (𝐴 ·Q [⟨𝑧, 𝑤⟩] ~Q ))
32eleq1d 2278 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ) ↔ (𝐴 ·Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q )))
4 oveq2 5982 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (𝐴 ·Q [⟨𝑧, 𝑤⟩] ~Q ) = (𝐴 ·Q 𝐵))
54eleq1d 2278 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ((𝐴 ·Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ) ↔ (𝐴 ·Q 𝐵) ∈ ((N × N) / ~Q )))
6 mulpipqqs 7528 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q )
7 mulclpi 7483 . . . . . . 7 ((𝑥N𝑧N) → (𝑥 ·N 𝑧) ∈ N)
8 mulclpi 7483 . . . . . . 7 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
97, 8anim12i 338 . . . . . 6 (((𝑥N𝑧N) ∧ (𝑦N𝑤N)) → ((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
109an4s 590 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
11 opelxpi 4728 . . . . 5 (((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N) → ⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩ ∈ (N × N))
12 enqex 7515 . . . . . 6 ~Q ∈ V
1312ecelqsi 6706 . . . . 5 (⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩ ∈ (N × N) → [⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
1410, 11, 133syl 17 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → [⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
156, 14eqeltrd 2286 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ))
161, 3, 5, 152ecoptocl 6740 . 2 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ ((N × N) / ~Q ))
1716, 1eleqtrrdi 2303 1 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ Q)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  cop 3649   × cxp 4694  (class class class)co 5974  [cec 6648   / cqs 6649  Ncnpi 7427   ·N cmi 7429   ~Q ceq 7434  Qcnq 7435   ·Q cmq 7438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-mi 7461  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-mqqs 7505
This theorem is referenced by:  halfnqq  7565  prarloclemarch  7573  prarloclemarch2  7574  ltrnqg  7575  prarloclemlt  7648  prarloclemlo  7649  prarloclemcalc  7657  addnqprllem  7682  addnqprulem  7683  addnqprl  7684  addnqpru  7685  mpvlu  7694  dmmp  7696  appdivnq  7718  prmuloclemcalc  7720  prmuloc  7721  mulnqprl  7723  mulnqpru  7724  mullocprlem  7725  mullocpr  7726  mulclpr  7727  mulnqprlemrl  7728  mulnqprlemru  7729  mulnqprlemfl  7730  mulnqprlemfu  7731  mulnqpr  7732  mulassprg  7736  distrlem1prl  7737  distrlem1pru  7738  distrlem4prl  7739  distrlem4pru  7740  distrlem5prl  7741  distrlem5pru  7742  1idprl  7745  1idpru  7746  recexprlem1ssl  7788  recexprlem1ssu  7789  recexprlemss1l  7790  recexprlemss1u  7791
  Copyright terms: Public domain W3C validator