| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulclnq | GIF version | ||
| Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) |
| Ref | Expression |
|---|---|
| mulclnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nqqs 7503 | . . 3 ⊢ Q = ((N × N) / ~Q ) | |
| 2 | oveq1 5981 | . . . 4 ⊢ ([〈𝑥, 𝑦〉] ~Q = 𝐴 → ([〈𝑥, 𝑦〉] ~Q ·Q [〈𝑧, 𝑤〉] ~Q ) = (𝐴 ·Q [〈𝑧, 𝑤〉] ~Q )) | |
| 3 | 2 | eleq1d 2278 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~Q = 𝐴 → (([〈𝑥, 𝑦〉] ~Q ·Q [〈𝑧, 𝑤〉] ~Q ) ∈ ((N × N) / ~Q ) ↔ (𝐴 ·Q [〈𝑧, 𝑤〉] ~Q ) ∈ ((N × N) / ~Q ))) |
| 4 | oveq2 5982 | . . . 4 ⊢ ([〈𝑧, 𝑤〉] ~Q = 𝐵 → (𝐴 ·Q [〈𝑧, 𝑤〉] ~Q ) = (𝐴 ·Q 𝐵)) | |
| 5 | 4 | eleq1d 2278 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ~Q = 𝐵 → ((𝐴 ·Q [〈𝑧, 𝑤〉] ~Q ) ∈ ((N × N) / ~Q ) ↔ (𝐴 ·Q 𝐵) ∈ ((N × N) / ~Q ))) |
| 6 | mulpipqqs 7528 | . . . 4 ⊢ (((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ N ∧ 𝑤 ∈ N)) → ([〈𝑥, 𝑦〉] ~Q ·Q [〈𝑧, 𝑤〉] ~Q ) = [〈(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)〉] ~Q ) | |
| 7 | mulclpi 7483 | . . . . . . 7 ⊢ ((𝑥 ∈ N ∧ 𝑧 ∈ N) → (𝑥 ·N 𝑧) ∈ N) | |
| 8 | mulclpi 7483 | . . . . . . 7 ⊢ ((𝑦 ∈ N ∧ 𝑤 ∈ N) → (𝑦 ·N 𝑤) ∈ N) | |
| 9 | 7, 8 | anim12i 338 | . . . . . 6 ⊢ (((𝑥 ∈ N ∧ 𝑧 ∈ N) ∧ (𝑦 ∈ N ∧ 𝑤 ∈ N)) → ((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N)) |
| 10 | 9 | an4s 590 | . . . . 5 ⊢ (((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ N ∧ 𝑤 ∈ N)) → ((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N)) |
| 11 | opelxpi 4728 | . . . . 5 ⊢ (((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N) → 〈(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)〉 ∈ (N × N)) | |
| 12 | enqex 7515 | . . . . . 6 ⊢ ~Q ∈ V | |
| 13 | 12 | ecelqsi 6706 | . . . . 5 ⊢ (〈(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)〉 ∈ (N × N) → [〈(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)〉] ~Q ∈ ((N × N) / ~Q )) |
| 14 | 10, 11, 13 | 3syl 17 | . . . 4 ⊢ (((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ N ∧ 𝑤 ∈ N)) → [〈(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)〉] ~Q ∈ ((N × N) / ~Q )) |
| 15 | 6, 14 | eqeltrd 2286 | . . 3 ⊢ (((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ N ∧ 𝑤 ∈ N)) → ([〈𝑥, 𝑦〉] ~Q ·Q [〈𝑧, 𝑤〉] ~Q ) ∈ ((N × N) / ~Q )) |
| 16 | 1, 3, 5, 15 | 2ecoptocl 6740 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) ∈ ((N × N) / ~Q )) |
| 17 | 16, 1 | eleqtrrdi 2303 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) ∈ Q) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 〈cop 3649 × cxp 4694 (class class class)co 5974 [cec 6648 / cqs 6649 Ncnpi 7427 ·N cmi 7429 ~Q ceq 7434 Qcnq 7435 ·Q cmq 7438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-mi 7461 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-mqqs 7505 |
| This theorem is referenced by: halfnqq 7565 prarloclemarch 7573 prarloclemarch2 7574 ltrnqg 7575 prarloclemlt 7648 prarloclemlo 7649 prarloclemcalc 7657 addnqprllem 7682 addnqprulem 7683 addnqprl 7684 addnqpru 7685 mpvlu 7694 dmmp 7696 appdivnq 7718 prmuloclemcalc 7720 prmuloc 7721 mulnqprl 7723 mulnqpru 7724 mullocprlem 7725 mullocpr 7726 mulclpr 7727 mulnqprlemrl 7728 mulnqprlemru 7729 mulnqprlemfl 7730 mulnqprlemfu 7731 mulnqpr 7732 mulassprg 7736 distrlem1prl 7737 distrlem1pru 7738 distrlem4prl 7739 distrlem4pru 7740 distrlem5prl 7741 distrlem5pru 7742 1idprl 7745 1idpru 7746 recexprlem1ssl 7788 recexprlem1ssu 7789 recexprlemss1l 7790 recexprlemss1u 7791 |
| Copyright terms: Public domain | W3C validator |