ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclnq GIF version

Theorem mulclnq 7374
Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.)
Assertion
Ref Expression
mulclnq ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ Q)

Proof of Theorem mulclnq
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7346 . . 3 Q = ((N × N) / ~Q )
2 oveq1 5881 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = (𝐴 ·Q [⟨𝑧, 𝑤⟩] ~Q ))
32eleq1d 2246 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ) ↔ (𝐴 ·Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q )))
4 oveq2 5882 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (𝐴 ·Q [⟨𝑧, 𝑤⟩] ~Q ) = (𝐴 ·Q 𝐵))
54eleq1d 2246 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ((𝐴 ·Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ) ↔ (𝐴 ·Q 𝐵) ∈ ((N × N) / ~Q )))
6 mulpipqqs 7371 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q )
7 mulclpi 7326 . . . . . . 7 ((𝑥N𝑧N) → (𝑥 ·N 𝑧) ∈ N)
8 mulclpi 7326 . . . . . . 7 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
97, 8anim12i 338 . . . . . 6 (((𝑥N𝑧N) ∧ (𝑦N𝑤N)) → ((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
109an4s 588 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
11 opelxpi 4658 . . . . 5 (((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N) → ⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩ ∈ (N × N))
12 enqex 7358 . . . . . 6 ~Q ∈ V
1312ecelqsi 6588 . . . . 5 (⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩ ∈ (N × N) → [⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
1410, 11, 133syl 17 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → [⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
156, 14eqeltrd 2254 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ))
161, 3, 5, 152ecoptocl 6622 . 2 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ ((N × N) / ~Q ))
1716, 1eleqtrrdi 2271 1 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ Q)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cop 3595   × cxp 4624  (class class class)co 5874  [cec 6532   / cqs 6533  Ncnpi 7270   ·N cmi 7272   ~Q ceq 7277  Qcnq 7278   ·Q cmq 7281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-oadd 6420  df-omul 6421  df-er 6534  df-ec 6536  df-qs 6540  df-ni 7302  df-mi 7304  df-mpq 7343  df-enq 7345  df-nqqs 7346  df-mqqs 7348
This theorem is referenced by:  halfnqq  7408  prarloclemarch  7416  prarloclemarch2  7417  ltrnqg  7418  prarloclemlt  7491  prarloclemlo  7492  prarloclemcalc  7500  addnqprllem  7525  addnqprulem  7526  addnqprl  7527  addnqpru  7528  mpvlu  7537  dmmp  7539  appdivnq  7561  prmuloclemcalc  7563  prmuloc  7564  mulnqprl  7566  mulnqpru  7567  mullocprlem  7568  mullocpr  7569  mulclpr  7570  mulnqprlemrl  7571  mulnqprlemru  7572  mulnqprlemfl  7573  mulnqprlemfu  7574  mulnqpr  7575  mulassprg  7579  distrlem1prl  7580  distrlem1pru  7581  distrlem4prl  7582  distrlem4pru  7583  distrlem5prl  7584  distrlem5pru  7585  1idprl  7588  1idpru  7589  recexprlem1ssl  7631  recexprlem1ssu  7632  recexprlemss1l  7633  recexprlemss1u  7634
  Copyright terms: Public domain W3C validator