| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmexg | GIF version | ||
| Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.) |
| Ref | Expression |
|---|---|
| dmexg | ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 4494 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 2 | uniexg 4494 | . 2 ⊢ (∪ 𝐴 ∈ V → ∪ ∪ 𝐴 ∈ V) | |
| 3 | ssun1 3340 | . . . 4 ⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
| 4 | dmrnssfld 4950 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
| 5 | 3, 4 | sstri 3206 | . . 3 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
| 6 | ssexg 4191 | . . 3 ⊢ ((dom 𝐴 ⊆ ∪ ∪ 𝐴 ∧ ∪ ∪ 𝐴 ∈ V) → dom 𝐴 ∈ V) | |
| 7 | 5, 6 | mpan 424 | . 2 ⊢ (∪ ∪ 𝐴 ∈ V → dom 𝐴 ∈ V) |
| 8 | 1, 2, 7 | 3syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 Vcvv 2773 ∪ cun 3168 ⊆ wss 3170 ∪ cuni 3856 dom cdm 4683 ran crn 4684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-cnv 4691 df-dm 4693 df-rn 4694 |
| This theorem is referenced by: dmexd 4953 dmex 4954 iprc 4956 exse2 5065 xpexr2m 5133 elxp4 5179 cnvexg 5229 coexg 5236 dmfex 5477 cofunexg 6207 offval3 6232 1stvalg 6241 tposexg 6357 erexb 6658 f1vrnfibi 7062 fun2dmnop0 11014 shftfvalg 11204 ennnfonelemp1 12852 ptex 13171 prdsex 13176 prdsval 13180 prdsbaslemss 13181 prdsbas 13183 xmetunirn 14905 |
| Copyright terms: Public domain | W3C validator |