ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmexg GIF version

Theorem dmexg 4926
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
dmexg (𝐴𝑉 → dom 𝐴 ∈ V)

Proof of Theorem dmexg
StepHypRef Expression
1 uniexg 4470 . 2 (𝐴𝑉 𝐴 ∈ V)
2 uniexg 4470 . 2 ( 𝐴 ∈ V → 𝐴 ∈ V)
3 ssun1 3322 . . . 4 dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
4 dmrnssfld 4925 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
53, 4sstri 3188 . . 3 dom 𝐴 𝐴
6 ssexg 4168 . . 3 ((dom 𝐴 𝐴 𝐴 ∈ V) → dom 𝐴 ∈ V)
75, 6mpan 424 . 2 ( 𝐴 ∈ V → dom 𝐴 ∈ V)
81, 2, 73syl 17 1 (𝐴𝑉 → dom 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  Vcvv 2760  cun 3151  wss 3153   cuni 3835  dom cdm 4659  ran crn 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-cnv 4667  df-dm 4669  df-rn 4670
This theorem is referenced by:  dmex  4928  iprc  4930  exse2  5039  xpexr2m  5107  elxp4  5153  cnvexg  5203  coexg  5210  dmfex  5443  cofunexg  6161  offval3  6186  1stvalg  6195  tposexg  6311  erexb  6612  f1vrnfibi  7004  shftfvalg  10962  ennnfonelemp1  12563  ptex  12875  prdsex  12880  xmetunirn  14526
  Copyright terms: Public domain W3C validator