Step | Hyp | Ref
| Expression |
1 | | prodeq1 11461 |
. . 3
⊢ (𝑤 = ∅ → ∏𝑘 ∈ 𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵) |
2 | 1 | breq1d 3977 |
. 2
⊢ (𝑤 = ∅ → (∏𝑘 ∈ 𝑤 𝐵 # 0 ↔ ∏𝑘 ∈ ∅ 𝐵 # 0)) |
3 | | prodeq1 11461 |
. . 3
⊢ (𝑤 = 𝑦 → ∏𝑘 ∈ 𝑤 𝐵 = ∏𝑘 ∈ 𝑦 𝐵) |
4 | 3 | breq1d 3977 |
. 2
⊢ (𝑤 = 𝑦 → (∏𝑘 ∈ 𝑤 𝐵 # 0 ↔ ∏𝑘 ∈ 𝑦 𝐵 # 0)) |
5 | | prodeq1 11461 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘 ∈ 𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) |
6 | 5 | breq1d 3977 |
. 2
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘 ∈ 𝑤 𝐵 # 0 ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0)) |
7 | | prodeq1 11461 |
. . 3
⊢ (𝑤 = 𝐴 → ∏𝑘 ∈ 𝑤 𝐵 = ∏𝑘 ∈ 𝐴 𝐵) |
8 | 7 | breq1d 3977 |
. 2
⊢ (𝑤 = 𝐴 → (∏𝑘 ∈ 𝑤 𝐵 # 0 ↔ ∏𝑘 ∈ 𝐴 𝐵 # 0)) |
9 | | prod0 11493 |
. . . 4
⊢
∏𝑘 ∈
∅ 𝐵 =
1 |
10 | | 1ap0 8469 |
. . . 4
⊢ 1 #
0 |
11 | 9, 10 | eqbrtri 3987 |
. . 3
⊢
∏𝑘 ∈
∅ 𝐵 #
0 |
12 | 11 | a1i 9 |
. 2
⊢ (𝜑 → ∏𝑘 ∈ ∅ 𝐵 # 0) |
13 | | simplr 520 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑦 ∈ Fin) |
14 | | simplll 523 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝜑) |
15 | | simplrl 525 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝑦 ⊆ 𝐴) |
16 | | simpr 109 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ 𝑦) |
17 | 15, 16 | sseldd 3129 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ 𝐴) |
18 | | fprodn0.2 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
19 | 14, 17, 18 | syl2anc 409 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℂ) |
20 | 13, 19 | fprodcl 11515 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ 𝑦 𝐵 ∈ ℂ) |
21 | 20 | adantr 274 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 # 0) → ∏𝑘 ∈ 𝑦 𝐵 ∈ ℂ) |
22 | | simprr 522 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
23 | 22 | eldifad 3113 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ 𝐴) |
24 | 18 | ralrimiva 2530 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
25 | 24 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
26 | | rspcsbela 3090 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) |
27 | 23, 25, 26 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) |
28 | 27 | adantr 274 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 # 0) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) |
29 | | simpr 109 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 # 0) → ∏𝑘 ∈ 𝑦 𝐵 # 0) |
30 | | fprodap0.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 # 0) |
31 | 30 | ralrimiva 2530 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 # 0) |
32 | 31 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∀𝑘 ∈ 𝐴 𝐵 # 0) |
33 | | nfcsb1v 3064 |
. . . . . . . . 9
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 |
34 | | nfcv 2299 |
. . . . . . . . 9
⊢
Ⅎ𝑘
# |
35 | | nfcv 2299 |
. . . . . . . . 9
⊢
Ⅎ𝑘0 |
36 | 33, 34, 35 | nfbr 4012 |
. . . . . . . 8
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 # 0 |
37 | | csbeq1a 3040 |
. . . . . . . . 9
⊢ (𝑘 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
38 | 37 | breq1d 3977 |
. . . . . . . 8
⊢ (𝑘 = 𝑧 → (𝐵 # 0 ↔ ⦋𝑧 / 𝑘⦌𝐵 # 0)) |
39 | 36, 38 | rspc 2810 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 # 0 → ⦋𝑧 / 𝑘⦌𝐵 # 0)) |
40 | 23, 32, 39 | sylc 62 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑧 / 𝑘⦌𝐵 # 0) |
41 | 40 | adantr 274 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 # 0) → ⦋𝑧 / 𝑘⦌𝐵 # 0) |
42 | 21, 28, 29, 41 | mulap0d 8536 |
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 # 0) → (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵) # 0) |
43 | 22 | eldifbd 3114 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ¬ 𝑧 ∈ 𝑦) |
44 | 33, 13, 22, 43, 19, 27, 37 | fprodunsn 11512 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵)) |
45 | 44 | breq1d 3977 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0 ↔ (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵) # 0)) |
46 | 45 | adantr 274 |
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 # 0) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0 ↔ (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵) # 0)) |
47 | 42, 46 | mpbird 166 |
. . 3
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 # 0) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0) |
48 | 47 | ex 114 |
. 2
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (∏𝑘 ∈ 𝑦 𝐵 # 0 → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0)) |
49 | | fprodn0.1 |
. 2
⊢ (𝜑 → 𝐴 ∈ Fin) |
50 | 2, 4, 6, 8, 12, 48, 49 | findcard2sd 6839 |
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 # 0) |