ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodap0 GIF version

Theorem fprodap0 11632
Description: A finite product of nonzero terms is nonzero. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
fprodn0.1 (𝜑𝐴 ∈ Fin)
fprodn0.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodap0.3 ((𝜑𝑘𝐴) → 𝐵 # 0)
Assertion
Ref Expression
fprodap0 (𝜑 → ∏𝑘𝐴 𝐵 # 0)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodap0
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11564 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
21breq1d 4015 . 2 (𝑤 = ∅ → (∏𝑘𝑤 𝐵 # 0 ↔ ∏𝑘 ∈ ∅ 𝐵 # 0))
3 prodeq1 11564 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
43breq1d 4015 . 2 (𝑤 = 𝑦 → (∏𝑘𝑤 𝐵 # 0 ↔ ∏𝑘𝑦 𝐵 # 0))
5 prodeq1 11564 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
65breq1d 4015 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 𝐵 # 0 ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0))
7 prodeq1 11564 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
87breq1d 4015 . 2 (𝑤 = 𝐴 → (∏𝑘𝑤 𝐵 # 0 ↔ ∏𝑘𝐴 𝐵 # 0))
9 prod0 11596 . . . 4 𝑘 ∈ ∅ 𝐵 = 1
10 1ap0 8550 . . . 4 1 # 0
119, 10eqbrtri 4026 . . 3 𝑘 ∈ ∅ 𝐵 # 0
1211a1i 9 . 2 (𝜑 → ∏𝑘 ∈ ∅ 𝐵 # 0)
13 simplr 528 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
14 simplll 533 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
15 simplrl 535 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑦𝐴)
16 simpr 110 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝑦)
1715, 16sseldd 3158 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
18 fprodn0.2 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1914, 17, 18syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
2013, 19fprodcl 11618 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℂ)
2120adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → ∏𝑘𝑦 𝐵 ∈ ℂ)
22 simprr 531 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
2322eldifad 3142 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
2418ralrimiva 2550 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
2524ad2antrr 488 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 ∈ ℂ)
26 rspcsbela 3118 . . . . . . 7 ((𝑧𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℂ) → 𝑧 / 𝑘𝐵 ∈ ℂ)
2723, 25, 26syl2anc 411 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
2827adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → 𝑧 / 𝑘𝐵 ∈ ℂ)
29 simpr 110 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → ∏𝑘𝑦 𝐵 # 0)
30 fprodap0.3 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 # 0)
3130ralrimiva 2550 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 𝐵 # 0)
3231ad2antrr 488 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 # 0)
33 nfcsb1v 3092 . . . . . . . . 9 𝑘𝑧 / 𝑘𝐵
34 nfcv 2319 . . . . . . . . 9 𝑘 #
35 nfcv 2319 . . . . . . . . 9 𝑘0
3633, 34, 35nfbr 4051 . . . . . . . 8 𝑘𝑧 / 𝑘𝐵 # 0
37 csbeq1a 3068 . . . . . . . . 9 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
3837breq1d 4015 . . . . . . . 8 (𝑘 = 𝑧 → (𝐵 # 0 ↔ 𝑧 / 𝑘𝐵 # 0))
3936, 38rspc 2837 . . . . . . 7 (𝑧𝐴 → (∀𝑘𝐴 𝐵 # 0 → 𝑧 / 𝑘𝐵 # 0))
4023, 32, 39sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 # 0)
4140adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → 𝑧 / 𝑘𝐵 # 0)
4221, 28, 29, 41mulap0d 8618 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) # 0)
4322eldifbd 3143 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
4433, 13, 22, 43, 19, 27, 37fprodunsn 11615 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
4544breq1d 4015 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) # 0))
4645adantr 276 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) # 0))
4742, 46mpbird 167 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0)
4847ex 115 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 𝐵 # 0 → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0))
49 fprodn0.1 . 2 (𝜑𝐴 ∈ Fin)
502, 4, 6, 8, 12, 48, 49findcard2sd 6895 1 (𝜑 → ∏𝑘𝐴 𝐵 # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  csb 3059  cdif 3128  cun 3129  wss 3131  c0 3424  {csn 3594   class class class wbr 4005  (class class class)co 5878  Fincfn 6743  cc 7812  0cc0 7814  1c1 7815   · cmul 7819   # cap 8541  cprod 11561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-oadd 6424  df-er 6538  df-en 6744  df-dom 6745  df-fin 6746  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-ihash 10759  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-proddc 11562
This theorem is referenced by:  fprodrec  11640  fproddivap  11641
  Copyright terms: Public domain W3C validator