| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elreal | GIF version | ||
| Description: Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) |
| Ref | Expression |
|---|---|
| elreal | ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-r 7942 | . . 3 ⊢ ℝ = (R × {0R}) | |
| 2 | 1 | eleq2i 2273 | . 2 ⊢ (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R})) |
| 3 | elxp2 4697 | . . 3 ⊢ (𝐴 ∈ (R × {0R}) ↔ ∃𝑥 ∈ R ∃𝑦 ∈ {0R}𝐴 = 〈𝑥, 𝑦〉) | |
| 4 | 0r 7870 | . . . . . . 7 ⊢ 0R ∈ R | |
| 5 | 4 | elexi 2785 | . . . . . 6 ⊢ 0R ∈ V |
| 6 | opeq2 3822 | . . . . . . 7 ⊢ (𝑦 = 0R → 〈𝑥, 𝑦〉 = 〈𝑥, 0R〉) | |
| 7 | 6 | eqeq2d 2218 | . . . . . 6 ⊢ (𝑦 = 0R → (𝐴 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝑥, 0R〉)) |
| 8 | 5, 7 | rexsn 3678 | . . . . 5 ⊢ (∃𝑦 ∈ {0R}𝐴 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝑥, 0R〉) |
| 9 | eqcom 2208 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 0R〉 ↔ 〈𝑥, 0R〉 = 𝐴) | |
| 10 | 8, 9 | bitri 184 | . . . 4 ⊢ (∃𝑦 ∈ {0R}𝐴 = 〈𝑥, 𝑦〉 ↔ 〈𝑥, 0R〉 = 𝐴) |
| 11 | 10 | rexbii 2514 | . . 3 ⊢ (∃𝑥 ∈ R ∃𝑦 ∈ {0R}𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| 12 | 3, 11 | bitri 184 | . 2 ⊢ (𝐴 ∈ (R × {0R}) ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| 13 | 2, 12 | bitri 184 | 1 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 {csn 3634 〈cop 3637 × cxp 4677 Rcnr 7417 0Rc0r 7418 ℝcr 7931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-eprel 4340 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-1o 6509 df-oadd 6513 df-omul 6514 df-er 6627 df-ec 6629 df-qs 6633 df-ni 7424 df-pli 7425 df-mi 7426 df-lti 7427 df-plpq 7464 df-mpq 7465 df-enq 7467 df-nqqs 7468 df-plqqs 7469 df-mqqs 7470 df-1nqqs 7471 df-rq 7472 df-ltnqqs 7473 df-inp 7586 df-i1p 7587 df-enr 7846 df-nr 7847 df-0r 7851 df-r 7942 |
| This theorem is referenced by: elrealeu 7949 axaddrcl 7985 axmulrcl 7987 axprecex 8000 axpre-ltirr 8002 axpre-ltwlin 8003 axpre-lttrn 8004 axpre-apti 8005 axpre-ltadd 8006 axpre-mulgt0 8007 axpre-mulext 8008 axarch 8011 axcaucvglemres 8019 |
| Copyright terms: Public domain | W3C validator |