Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elreal | GIF version |
Description: Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) |
Ref | Expression |
---|---|
elreal | ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r 7763 | . . 3 ⊢ ℝ = (R × {0R}) | |
2 | 1 | eleq2i 2233 | . 2 ⊢ (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R})) |
3 | elxp2 4622 | . . 3 ⊢ (𝐴 ∈ (R × {0R}) ↔ ∃𝑥 ∈ R ∃𝑦 ∈ {0R}𝐴 = 〈𝑥, 𝑦〉) | |
4 | 0r 7691 | . . . . . . 7 ⊢ 0R ∈ R | |
5 | 4 | elexi 2738 | . . . . . 6 ⊢ 0R ∈ V |
6 | opeq2 3759 | . . . . . . 7 ⊢ (𝑦 = 0R → 〈𝑥, 𝑦〉 = 〈𝑥, 0R〉) | |
7 | 6 | eqeq2d 2177 | . . . . . 6 ⊢ (𝑦 = 0R → (𝐴 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝑥, 0R〉)) |
8 | 5, 7 | rexsn 3620 | . . . . 5 ⊢ (∃𝑦 ∈ {0R}𝐴 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝑥, 0R〉) |
9 | eqcom 2167 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 0R〉 ↔ 〈𝑥, 0R〉 = 𝐴) | |
10 | 8, 9 | bitri 183 | . . . 4 ⊢ (∃𝑦 ∈ {0R}𝐴 = 〈𝑥, 𝑦〉 ↔ 〈𝑥, 0R〉 = 𝐴) |
11 | 10 | rexbii 2473 | . . 3 ⊢ (∃𝑥 ∈ R ∃𝑦 ∈ {0R}𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
12 | 3, 11 | bitri 183 | . 2 ⊢ (𝐴 ∈ (R × {0R}) ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
13 | 2, 12 | bitri 183 | 1 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 {csn 3576 〈cop 3579 × cxp 4602 Rcnr 7238 0Rc0r 7239 ℝcr 7752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-inp 7407 df-i1p 7408 df-enr 7667 df-nr 7668 df-0r 7672 df-r 7763 |
This theorem is referenced by: elrealeu 7770 axaddrcl 7806 axmulrcl 7808 axprecex 7821 axpre-ltirr 7823 axpre-ltwlin 7824 axpre-lttrn 7825 axpre-apti 7826 axpre-ltadd 7827 axpre-mulgt0 7828 axpre-mulext 7829 axarch 7832 axcaucvglemres 7840 |
Copyright terms: Public domain | W3C validator |