![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enqbreq | GIF version |
Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by NM, 27-Aug-1995.) |
Ref | Expression |
---|---|
enqbreq | โข (((๐ด โ N โง ๐ต โ N) โง (๐ถ โ N โง ๐ท โ N)) โ (โจ๐ด, ๐ตโฉ ~Q โจ๐ถ, ๐ทโฉ โ (๐ด ยทN ๐ท) = (๐ต ยทN ๐ถ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-enq 7364 | . 2 โข ~Q = {โจ๐ฅ, ๐ฆโฉ โฃ ((๐ฅ โ (N ร N) โง ๐ฆ โ (N ร N)) โง โ๐งโ๐คโ๐ฃโ๐ข((๐ฅ = โจ๐ง, ๐คโฉ โง ๐ฆ = โจ๐ฃ, ๐ขโฉ) โง (๐ง ยทN ๐ข) = (๐ค ยทN ๐ฃ)))} | |
2 | 1 | ecopoveq 6648 | 1 โข (((๐ด โ N โง ๐ต โ N) โง (๐ถ โ N โง ๐ท โ N)) โ (โจ๐ด, ๐ตโฉ ~Q โจ๐ถ, ๐ทโฉ โ (๐ด ยทN ๐ท) = (๐ต ยทN ๐ถ))) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 โ wb 105 = wceq 1364 โ wcel 2160 โจcop 3610 class class class wbr 4018 (class class class)co 5891 Ncnpi 7289 ยทN cmi 7291 ~Q ceq 7296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-xp 4647 df-iota 5193 df-fv 5239 df-ov 5894 df-enq 7364 |
This theorem is referenced by: enqbreq2 7374 enqeceq 7376 enqdc 7378 addcmpblnq 7384 mulcmpblnq 7385 mulcanenq 7402 |
Copyright terms: Public domain | W3C validator |