ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqbreq GIF version

Theorem enqbreq 7373
Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
enqbreq (((๐ด โˆˆ N โˆง ๐ต โˆˆ N) โˆง (๐ถ โˆˆ N โˆง ๐ท โˆˆ N)) โ†’ (โŸจ๐ด, ๐ตโŸฉ ~Q โŸจ๐ถ, ๐ทโŸฉ โ†” (๐ด ยทN ๐ท) = (๐ต ยทN ๐ถ)))

Proof of Theorem enqbreq
Dummy variables ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ค ๐‘ฃ ๐‘ข are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enq 7364 . 2 ~Q = {โŸจ๐‘ฅ, ๐‘ฆโŸฉ โˆฃ ((๐‘ฅ โˆˆ (N ร— N) โˆง ๐‘ฆ โˆˆ (N ร— N)) โˆง โˆƒ๐‘งโˆƒ๐‘คโˆƒ๐‘ฃโˆƒ๐‘ข((๐‘ฅ = โŸจ๐‘ง, ๐‘คโŸฉ โˆง ๐‘ฆ = โŸจ๐‘ฃ, ๐‘ขโŸฉ) โˆง (๐‘ง ยทN ๐‘ข) = (๐‘ค ยทN ๐‘ฃ)))}
21ecopoveq 6648 1 (((๐ด โˆˆ N โˆง ๐ต โˆˆ N) โˆง (๐ถ โˆˆ N โˆง ๐ท โˆˆ N)) โ†’ (โŸจ๐ด, ๐ตโŸฉ ~Q โŸจ๐ถ, ๐ทโŸฉ โ†” (๐ด ยทN ๐ท) = (๐ต ยทN ๐ถ)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โ†” wb 105   = wceq 1364   โˆˆ wcel 2160  โŸจcop 3610   class class class wbr 4018  (class class class)co 5891  Ncnpi 7289   ยทN cmi 7291   ~Q ceq 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4647  df-iota 5193  df-fv 5239  df-ov 5894  df-enq 7364
This theorem is referenced by:  enqbreq2  7374  enqeceq  7376  enqdc  7378  addcmpblnq  7384  mulcmpblnq  7385  mulcanenq  7402
  Copyright terms: Public domain W3C validator