ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcanenq GIF version

Theorem mulcanenq 7469
Description: Lemma for distributive law: cancellation of common factor. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
mulcanenq ((𝐴N𝐵N𝐶N) → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)

Proof of Theorem mulcanenq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . 3 ((𝐴N𝐵N𝐶N) → 𝐴N)
2 simp2 1000 . . 3 ((𝐴N𝐵N𝐶N) → 𝐵N)
3 simp3 1001 . . 3 ((𝐴N𝐵N𝐶N) → 𝐶N)
4 mulcompig 7415 . . . 4 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
54adantl 277 . . 3 (((𝐴N𝐵N𝐶N) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
6 mulasspig 7416 . . . 4 ((𝑥N𝑦N𝑧N) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
76adantl 277 . . 3 (((𝐴N𝐵N𝐶N) ∧ (𝑥N𝑦N𝑧N)) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
81, 2, 3, 5, 7caov32d 6108 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐶) ·N 𝐵))
9 mulclpi 7412 . . . . . 6 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
10 mulclpi 7412 . . . . . 6 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) ∈ N)
119, 10anim12i 338 . . . . 5 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N))
12 simpr 110 . . . . . 6 (((𝐴N𝐴N) ∧ (𝐵N𝐶N)) → (𝐵N𝐶N))
1312an4s 588 . . . . 5 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → (𝐵N𝐶N))
1411, 13jca 306 . . . 4 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → (((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) ∧ (𝐵N𝐶N)))
15143impdi 1304 . . 3 ((𝐴N𝐵N𝐶N) → (((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) ∧ (𝐵N𝐶N)))
16 enqbreq 7440 . . 3 ((((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) ∧ (𝐵N𝐶N)) → (⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩ ↔ ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐶) ·N 𝐵)))
1715, 16syl 14 . 2 ((𝐴N𝐵N𝐶N) → (⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩ ↔ ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐶) ·N 𝐵)))
188, 17mpbird 167 1 ((𝐴N𝐵N𝐶N) → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  cop 3626   class class class wbr 4034  (class class class)co 5925  Ncnpi 7356   ·N cmi 7358   ~Q ceq 7363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487  df-omul 6488  df-ni 7388  df-mi 7390  df-enq 7431
This theorem is referenced by:  mulcanenqec  7470
  Copyright terms: Public domain W3C validator