ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcanenq GIF version

Theorem mulcanenq 7299
Description: Lemma for distributive law: cancellation of common factor. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
mulcanenq ((𝐴N𝐵N𝐶N) → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)

Proof of Theorem mulcanenq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 982 . . 3 ((𝐴N𝐵N𝐶N) → 𝐴N)
2 simp2 983 . . 3 ((𝐴N𝐵N𝐶N) → 𝐵N)
3 simp3 984 . . 3 ((𝐴N𝐵N𝐶N) → 𝐶N)
4 mulcompig 7245 . . . 4 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
54adantl 275 . . 3 (((𝐴N𝐵N𝐶N) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
6 mulasspig 7246 . . . 4 ((𝑥N𝑦N𝑧N) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
76adantl 275 . . 3 (((𝐴N𝐵N𝐶N) ∧ (𝑥N𝑦N𝑧N)) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
81, 2, 3, 5, 7caov32d 5998 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐶) ·N 𝐵))
9 mulclpi 7242 . . . . . 6 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
10 mulclpi 7242 . . . . . 6 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) ∈ N)
119, 10anim12i 336 . . . . 5 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N))
12 simpr 109 . . . . . 6 (((𝐴N𝐴N) ∧ (𝐵N𝐶N)) → (𝐵N𝐶N))
1312an4s 578 . . . . 5 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → (𝐵N𝐶N))
1411, 13jca 304 . . . 4 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → (((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) ∧ (𝐵N𝐶N)))
15143impdi 1275 . . 3 ((𝐴N𝐵N𝐶N) → (((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) ∧ (𝐵N𝐶N)))
16 enqbreq 7270 . . 3 ((((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) ∧ (𝐵N𝐶N)) → (⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩ ↔ ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐶) ·N 𝐵)))
1715, 16syl 14 . 2 ((𝐴N𝐵N𝐶N) → (⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩ ↔ ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐶) ·N 𝐵)))
188, 17mpbird 166 1 ((𝐴N𝐵N𝐶N) → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1335  wcel 2128  cop 3563   class class class wbr 3965  (class class class)co 5821  Ncnpi 7186   ·N cmi 7188   ~Q ceq 7193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-oadd 6364  df-omul 6365  df-ni 7218  df-mi 7220  df-enq 7261
This theorem is referenced by:  mulcanenqec  7300
  Copyright terms: Public domain W3C validator