| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcanenq | GIF version | ||
| Description: Lemma for distributive law: cancellation of common factor. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) |
| Ref | Expression |
|---|---|
| mulcanenq | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → 〈(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)〉 ~Q 〈𝐵, 𝐶〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → 𝐴 ∈ N) | |
| 2 | simp2 1000 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → 𝐵 ∈ N) | |
| 3 | simp3 1001 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → 𝐶 ∈ N) | |
| 4 | mulcompig 7443 | . . . 4 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) ∧ (𝑥 ∈ N ∧ 𝑦 ∈ N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)) |
| 6 | mulasspig 7444 | . . . 4 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N ∧ 𝑧 ∈ N) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))) | |
| 7 | 6 | adantl 277 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) ∧ (𝑥 ∈ N ∧ 𝑦 ∈ N ∧ 𝑧 ∈ N)) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))) |
| 8 | 1, 2, 3, 5, 7 | caov32d 6126 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐶) ·N 𝐵)) |
| 9 | mulclpi 7440 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) | |
| 10 | mulclpi 7440 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·N 𝐶) ∈ N) | |
| 11 | 9, 10 | anim12i 338 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐴 ∈ N ∧ 𝐶 ∈ N)) → ((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N)) |
| 12 | simpr 110 | . . . . . 6 ⊢ (((𝐴 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐵 ∈ N ∧ 𝐶 ∈ N)) | |
| 13 | 12 | an4s 588 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐴 ∈ N ∧ 𝐶 ∈ N)) → (𝐵 ∈ N ∧ 𝐶 ∈ N)) |
| 14 | 11, 13 | jca 306 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐴 ∈ N ∧ 𝐶 ∈ N)) → (((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N))) |
| 15 | 14 | 3impdi 1305 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N))) |
| 16 | enqbreq 7468 | . . 3 ⊢ ((((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (〈(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)〉 ~Q 〈𝐵, 𝐶〉 ↔ ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐶) ·N 𝐵))) | |
| 17 | 15, 16 | syl 14 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (〈(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)〉 ~Q 〈𝐵, 𝐶〉 ↔ ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐶) ·N 𝐵))) |
| 18 | 8, 17 | mpbird 167 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → 〈(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)〉 ~Q 〈𝐵, 𝐶〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 〈cop 3635 class class class wbr 4043 (class class class)co 5943 Ncnpi 7384 ·N cmi 7386 ~Q ceq 7391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-oadd 6505 df-omul 6506 df-ni 7416 df-mi 7418 df-enq 7459 |
| This theorem is referenced by: mulcanenqec 7498 |
| Copyright terms: Public domain | W3C validator |