ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcmpblnq GIF version

Theorem mulcmpblnq 7452
Description: Lemma showing compatibility of multiplication. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
mulcmpblnq ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → ⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩))

Proof of Theorem mulcmpblnq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 5934 . 2 (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅)))
2 mulclpi 7412 . . . . . . . 8 ((𝐴N𝐹N) → (𝐴 ·N 𝐹) ∈ N)
3 mulclpi 7412 . . . . . . . 8 ((𝐵N𝐺N) → (𝐵 ·N 𝐺) ∈ N)
42, 3anim12i 338 . . . . . . 7 (((𝐴N𝐹N) ∧ (𝐵N𝐺N)) → ((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N))
54an4s 588 . . . . . 6 (((𝐴N𝐵N) ∧ (𝐹N𝐺N)) → ((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N))
6 mulclpi 7412 . . . . . . . 8 ((𝐶N𝑅N) → (𝐶 ·N 𝑅) ∈ N)
7 mulclpi 7412 . . . . . . . 8 ((𝐷N𝑆N) → (𝐷 ·N 𝑆) ∈ N)
86, 7anim12i 338 . . . . . . 7 (((𝐶N𝑅N) ∧ (𝐷N𝑆N)) → ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N))
98an4s 588 . . . . . 6 (((𝐶N𝐷N) ∧ (𝑅N𝑆N)) → ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N))
105, 9anim12i 338 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐹N𝐺N)) ∧ ((𝐶N𝐷N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)))
1110an4s 588 . . . 4 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)))
12 enqbreq 7440 . . . 4 ((((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)) → (⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩ ↔ ((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅))))
1311, 12syl 14 . . 3 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩ ↔ ((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅))))
14 simplll 533 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐴N)
15 simprll 537 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐹N)
16 simplrr 536 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐷N)
17 mulcompig 7415 . . . . . 6 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
1817adantl 277 . . . . 5 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
19 mulasspig 7416 . . . . . 6 ((𝑥N𝑦N𝑧N) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
2019adantl 277 . . . . 5 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N𝑧N)) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
21 simprrr 540 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝑆N)
22 mulclpi 7412 . . . . . 6 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) ∈ N)
2322adantl 277 . . . . 5 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) ∈ N)
2414, 15, 16, 18, 20, 21, 23caov4d 6112 . . . 4 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → ((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)))
25 simpllr 534 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐵N)
26 simprlr 538 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐺N)
27 simplrl 535 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐶N)
28 simprrl 539 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝑅N)
2925, 26, 27, 18, 20, 28, 23caov4d 6112 . . . 4 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅)))
3024, 29eqeq12d 2211 . . 3 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅)) ↔ ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅))))
3113, 30bitrd 188 . 2 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩ ↔ ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅))))
321, 31imbitrrid 156 1 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → ⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  cop 3626   class class class wbr 4034  (class class class)co 5925  Ncnpi 7356   ·N cmi 7358   ~Q ceq 7363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487  df-omul 6488  df-ni 7388  df-mi 7390  df-enq 7431
This theorem is referenced by:  mulpipqqs  7457
  Copyright terms: Public domain W3C validator