ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcmpblnq GIF version

Theorem mulcmpblnq 7140
Description: Lemma showing compatibility of multiplication. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
mulcmpblnq ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → ⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩))

Proof of Theorem mulcmpblnq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 5749 . 2 (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅)))
2 mulclpi 7100 . . . . . . . 8 ((𝐴N𝐹N) → (𝐴 ·N 𝐹) ∈ N)
3 mulclpi 7100 . . . . . . . 8 ((𝐵N𝐺N) → (𝐵 ·N 𝐺) ∈ N)
42, 3anim12i 334 . . . . . . 7 (((𝐴N𝐹N) ∧ (𝐵N𝐺N)) → ((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N))
54an4s 560 . . . . . 6 (((𝐴N𝐵N) ∧ (𝐹N𝐺N)) → ((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N))
6 mulclpi 7100 . . . . . . . 8 ((𝐶N𝑅N) → (𝐶 ·N 𝑅) ∈ N)
7 mulclpi 7100 . . . . . . . 8 ((𝐷N𝑆N) → (𝐷 ·N 𝑆) ∈ N)
86, 7anim12i 334 . . . . . . 7 (((𝐶N𝑅N) ∧ (𝐷N𝑆N)) → ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N))
98an4s 560 . . . . . 6 (((𝐶N𝐷N) ∧ (𝑅N𝑆N)) → ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N))
105, 9anim12i 334 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐹N𝐺N)) ∧ ((𝐶N𝐷N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)))
1110an4s 560 . . . 4 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)))
12 enqbreq 7128 . . . 4 ((((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)) → (⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩ ↔ ((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅))))
1311, 12syl 14 . . 3 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩ ↔ ((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅))))
14 simplll 505 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐴N)
15 simprll 509 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐹N)
16 simplrr 508 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐷N)
17 mulcompig 7103 . . . . . 6 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
1817adantl 273 . . . . 5 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
19 mulasspig 7104 . . . . . 6 ((𝑥N𝑦N𝑧N) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
2019adantl 273 . . . . 5 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N𝑧N)) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
21 simprrr 512 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝑆N)
22 mulclpi 7100 . . . . . 6 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) ∈ N)
2322adantl 273 . . . . 5 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) ∈ N)
2414, 15, 16, 18, 20, 21, 23caov4d 5921 . . . 4 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → ((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)))
25 simpllr 506 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐵N)
26 simprlr 510 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐺N)
27 simplrl 507 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐶N)
28 simprrl 511 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝑅N)
2925, 26, 27, 18, 20, 28, 23caov4d 5921 . . . 4 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅)))
3024, 29eqeq12d 2130 . . 3 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅)) ↔ ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅))))
3113, 30bitrd 187 . 2 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩ ↔ ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅))))
321, 31syl5ibr 155 1 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → ⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 945   = wceq 1314  wcel 1463  cop 3498   class class class wbr 3897  (class class class)co 5740  Ncnpi 7044   ·N cmi 7046   ~Q ceq 7051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-iord 4256  df-on 4258  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-oadd 6283  df-omul 6284  df-ni 7076  df-mi 7078  df-enq 7119
This theorem is referenced by:  mulpipqqs  7145
  Copyright terms: Public domain W3C validator