ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcmpblnq GIF version

Theorem mulcmpblnq 7563
Description: Lemma showing compatibility of multiplication. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
mulcmpblnq ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → ⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩))

Proof of Theorem mulcmpblnq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 6016 . 2 (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅)))
2 mulclpi 7523 . . . . . . . 8 ((𝐴N𝐹N) → (𝐴 ·N 𝐹) ∈ N)
3 mulclpi 7523 . . . . . . . 8 ((𝐵N𝐺N) → (𝐵 ·N 𝐺) ∈ N)
42, 3anim12i 338 . . . . . . 7 (((𝐴N𝐹N) ∧ (𝐵N𝐺N)) → ((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N))
54an4s 590 . . . . . 6 (((𝐴N𝐵N) ∧ (𝐹N𝐺N)) → ((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N))
6 mulclpi 7523 . . . . . . . 8 ((𝐶N𝑅N) → (𝐶 ·N 𝑅) ∈ N)
7 mulclpi 7523 . . . . . . . 8 ((𝐷N𝑆N) → (𝐷 ·N 𝑆) ∈ N)
86, 7anim12i 338 . . . . . . 7 (((𝐶N𝑅N) ∧ (𝐷N𝑆N)) → ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N))
98an4s 590 . . . . . 6 (((𝐶N𝐷N) ∧ (𝑅N𝑆N)) → ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N))
105, 9anim12i 338 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐹N𝐺N)) ∧ ((𝐶N𝐷N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)))
1110an4s 590 . . . 4 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)))
12 enqbreq 7551 . . . 4 ((((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)) → (⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩ ↔ ((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅))))
1311, 12syl 14 . . 3 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩ ↔ ((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅))))
14 simplll 533 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐴N)
15 simprll 537 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐹N)
16 simplrr 536 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐷N)
17 mulcompig 7526 . . . . . 6 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
1817adantl 277 . . . . 5 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
19 mulasspig 7527 . . . . . 6 ((𝑥N𝑦N𝑧N) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
2019adantl 277 . . . . 5 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N𝑧N)) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
21 simprrr 540 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝑆N)
22 mulclpi 7523 . . . . . 6 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) ∈ N)
2322adantl 277 . . . . 5 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) ∈ N)
2414, 15, 16, 18, 20, 21, 23caov4d 6196 . . . 4 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → ((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)))
25 simpllr 534 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐵N)
26 simprlr 538 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐺N)
27 simplrl 535 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐶N)
28 simprrl 539 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝑅N)
2925, 26, 27, 18, 20, 28, 23caov4d 6196 . . . 4 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅)))
3024, 29eqeq12d 2244 . . 3 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅)) ↔ ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅))))
3113, 30bitrd 188 . 2 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩ ↔ ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅))))
321, 31imbitrrid 156 1 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → ⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  cop 3669   class class class wbr 4083  (class class class)co 6007  Ncnpi 7467   ·N cmi 7469   ~Q ceq 7474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-oadd 6572  df-omul 6573  df-ni 7499  df-mi 7501  df-enq 7542
This theorem is referenced by:  mulpipqqs  7568
  Copyright terms: Public domain W3C validator