ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcmpblnq GIF version

Theorem mulcmpblnq 7366
Description: Lemma showing compatibility of multiplication. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
mulcmpblnq ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → ⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩))

Proof of Theorem mulcmpblnq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 5883 . 2 (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅)))
2 mulclpi 7326 . . . . . . . 8 ((𝐴N𝐹N) → (𝐴 ·N 𝐹) ∈ N)
3 mulclpi 7326 . . . . . . . 8 ((𝐵N𝐺N) → (𝐵 ·N 𝐺) ∈ N)
42, 3anim12i 338 . . . . . . 7 (((𝐴N𝐹N) ∧ (𝐵N𝐺N)) → ((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N))
54an4s 588 . . . . . 6 (((𝐴N𝐵N) ∧ (𝐹N𝐺N)) → ((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N))
6 mulclpi 7326 . . . . . . . 8 ((𝐶N𝑅N) → (𝐶 ·N 𝑅) ∈ N)
7 mulclpi 7326 . . . . . . . 8 ((𝐷N𝑆N) → (𝐷 ·N 𝑆) ∈ N)
86, 7anim12i 338 . . . . . . 7 (((𝐶N𝑅N) ∧ (𝐷N𝑆N)) → ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N))
98an4s 588 . . . . . 6 (((𝐶N𝐷N) ∧ (𝑅N𝑆N)) → ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N))
105, 9anim12i 338 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐹N𝐺N)) ∧ ((𝐶N𝐷N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)))
1110an4s 588 . . . 4 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)))
12 enqbreq 7354 . . . 4 ((((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)) → (⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩ ↔ ((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅))))
1311, 12syl 14 . . 3 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩ ↔ ((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅))))
14 simplll 533 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐴N)
15 simprll 537 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐹N)
16 simplrr 536 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐷N)
17 mulcompig 7329 . . . . . 6 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
1817adantl 277 . . . . 5 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
19 mulasspig 7330 . . . . . 6 ((𝑥N𝑦N𝑧N) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
2019adantl 277 . . . . 5 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N𝑧N)) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
21 simprrr 540 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝑆N)
22 mulclpi 7326 . . . . . 6 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) ∈ N)
2322adantl 277 . . . . 5 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) ∈ N)
2414, 15, 16, 18, 20, 21, 23caov4d 6058 . . . 4 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → ((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)))
25 simpllr 534 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐵N)
26 simprlr 538 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐺N)
27 simplrl 535 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐶N)
28 simprrl 539 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝑅N)
2925, 26, 27, 18, 20, 28, 23caov4d 6058 . . . 4 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅)))
3024, 29eqeq12d 2192 . . 3 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅)) ↔ ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅))))
3113, 30bitrd 188 . 2 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩ ↔ ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅))))
321, 31imbitrrid 156 1 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → ⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  cop 3595   class class class wbr 4003  (class class class)co 5874  Ncnpi 7270   ·N cmi 7272   ~Q ceq 7277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-oadd 6420  df-omul 6421  df-ni 7302  df-mi 7304  df-enq 7345
This theorem is referenced by:  mulpipqqs  7371
  Copyright terms: Public domain W3C validator