ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcmpblnq GIF version

Theorem mulcmpblnq 7330
Description: Lemma showing compatibility of multiplication. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
mulcmpblnq ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → ⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩))

Proof of Theorem mulcmpblnq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 5862 . 2 (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅)))
2 mulclpi 7290 . . . . . . . 8 ((𝐴N𝐹N) → (𝐴 ·N 𝐹) ∈ N)
3 mulclpi 7290 . . . . . . . 8 ((𝐵N𝐺N) → (𝐵 ·N 𝐺) ∈ N)
42, 3anim12i 336 . . . . . . 7 (((𝐴N𝐹N) ∧ (𝐵N𝐺N)) → ((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N))
54an4s 583 . . . . . 6 (((𝐴N𝐵N) ∧ (𝐹N𝐺N)) → ((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N))
6 mulclpi 7290 . . . . . . . 8 ((𝐶N𝑅N) → (𝐶 ·N 𝑅) ∈ N)
7 mulclpi 7290 . . . . . . . 8 ((𝐷N𝑆N) → (𝐷 ·N 𝑆) ∈ N)
86, 7anim12i 336 . . . . . . 7 (((𝐶N𝑅N) ∧ (𝐷N𝑆N)) → ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N))
98an4s 583 . . . . . 6 (((𝐶N𝐷N) ∧ (𝑅N𝑆N)) → ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N))
105, 9anim12i 336 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐹N𝐺N)) ∧ ((𝐶N𝐷N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)))
1110an4s 583 . . . 4 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)))
12 enqbreq 7318 . . . 4 ((((𝐴 ·N 𝐹) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ ((𝐶 ·N 𝑅) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)) → (⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩ ↔ ((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅))))
1311, 12syl 14 . . 3 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩ ↔ ((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅))))
14 simplll 528 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐴N)
15 simprll 532 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐹N)
16 simplrr 531 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐷N)
17 mulcompig 7293 . . . . . 6 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
1817adantl 275 . . . . 5 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
19 mulasspig 7294 . . . . . 6 ((𝑥N𝑦N𝑧N) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
2019adantl 275 . . . . 5 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N𝑧N)) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
21 simprrr 535 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝑆N)
22 mulclpi 7290 . . . . . 6 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) ∈ N)
2322adantl 275 . . . . 5 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) ∈ N)
2414, 15, 16, 18, 20, 21, 23caov4d 6037 . . . 4 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → ((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)))
25 simpllr 529 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐵N)
26 simprlr 533 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐺N)
27 simplrl 530 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐶N)
28 simprrl 534 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝑅N)
2925, 26, 27, 18, 20, 28, 23caov4d 6037 . . . 4 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅)))
3024, 29eqeq12d 2185 . . 3 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑅)) ↔ ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅))))
3113, 30bitrd 187 . 2 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩ ↔ ((𝐴 ·N 𝐷) ·N (𝐹 ·N 𝑆)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑅))))
321, 31syl5ibr 155 1 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → ⟨(𝐴 ·N 𝐹), (𝐵 ·N 𝐺)⟩ ~Q ⟨(𝐶 ·N 𝑅), (𝐷 ·N 𝑆)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  cop 3586   class class class wbr 3989  (class class class)co 5853  Ncnpi 7234   ·N cmi 7236   ~Q ceq 7241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-ni 7266  df-mi 7268  df-enq 7309
This theorem is referenced by:  mulpipqqs  7335
  Copyright terms: Public domain W3C validator