ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqeceq GIF version

Theorem enqeceq 7068
Description: Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.)
Assertion
Ref Expression
enqeceq (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)))

Proof of Theorem enqeceq
StepHypRef Expression
1 enqer 7067 . . . 4 ~Q Er (N × N)
21a1i 9 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ~Q Er (N × N))
3 opelxpi 4509 . . . 4 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
43adantr 272 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
52, 4erth 6403 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩ ↔ [⟨𝐴, 𝐵⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ))
6 enqbreq 7065 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩ ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)))
75, 6bitr3d 189 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1299  wcel 1448  cop 3477   class class class wbr 3875   × cxp 4475  (class class class)co 5706   Er wer 6356  [cec 6357  Ncnpi 6981   ·N cmi 6983   ~Q ceq 6988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-ni 7013  df-mi 7015  df-enq 7056
This theorem is referenced by:  ordpipqqs  7083  nqtri3or  7105
  Copyright terms: Public domain W3C validator