ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqeceq GIF version

Theorem enqeceq 7443
Description: Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.)
Assertion
Ref Expression
enqeceq (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)))

Proof of Theorem enqeceq
StepHypRef Expression
1 enqer 7442 . . . 4 ~Q Er (N × N)
21a1i 9 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ~Q Er (N × N))
3 opelxpi 4696 . . . 4 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
43adantr 276 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
52, 4erth 6647 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩ ↔ [⟨𝐴, 𝐵⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ))
6 enqbreq 7440 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩ ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)))
75, 6bitr3d 190 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  cop 3626   class class class wbr 4034   × cxp 4662  (class class class)co 5925   Er wer 6598  [cec 6599  Ncnpi 7356   ·N cmi 7358   ~Q ceq 7363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-ni 7388  df-mi 7390  df-enq 7431
This theorem is referenced by:  ordpipqqs  7458  nqtri3or  7480
  Copyright terms: Public domain W3C validator