| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1of1 | GIF version | ||
| Description: A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1of1 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 5324 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 –1-1→wf1 5314 –onto→wfo 5315 –1-1-onto→wf1o 5316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1o 5324 |
| This theorem is referenced by: f1of 5571 f1sng 5614 f1oresrab 5799 f1ocnvfvrneq 5905 isores3 5938 isoini2 5942 f1oiso 5949 f1opw2 6210 tposf12 6413 enssdom 6911 mapen 7003 ssenen 7008 phplem4 7012 phplem4on 7025 fidceq 7027 en2eqpr 7065 fiintim 7089 f1finf1o 7110 preimaf1ofi 7114 isotilem 7169 inresflem 7223 casefun 7248 endjusym 7259 pr2cv1 7364 dju1p1e2 7371 frec2uzled 10646 iseqf1olemnab 10718 iseqf1olemab 10719 iseqf1olemnanb 10720 seqf1oglem1 10736 hashen 11001 hashfacen 11053 negfi 11734 fisumss 11898 fprodssdc 12096 phimullem 12742 eulerthlemh 12748 ctinfom 12994 ssnnctlemct 13012 f1ocpbllem 13338 f1ovscpbl 13340 xpsff1o2 13379 eqgen 13759 conjsubgen 13810 hmeoopn 14979 hmeocld 14980 hmeontr 14981 hmeoimaf1o 14982 usgrf1 15967 iswomninnlem 16376 |
| Copyright terms: Public domain | W3C validator |