| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1of1 | GIF version | ||
| Description: A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1of1 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 5275 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 –1-1→wf1 5265 –onto→wfo 5266 –1-1-onto→wf1o 5267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1o 5275 |
| This theorem is referenced by: f1of 5516 f1sng 5558 f1oresrab 5739 f1ocnvfvrneq 5841 isores3 5874 isoini2 5878 f1oiso 5885 f1opw2 6142 tposf12 6345 enssdom 6839 mapen 6925 ssenen 6930 phplem4 6934 phplem4on 6946 fidceq 6948 en2eqpr 6986 fiintim 7010 f1finf1o 7031 preimaf1ofi 7035 isotilem 7090 inresflem 7144 casefun 7169 endjusym 7180 dju1p1e2 7287 frec2uzled 10555 iseqf1olemnab 10627 iseqf1olemab 10628 iseqf1olemnanb 10629 seqf1oglem1 10645 hashen 10910 hashfacen 10962 negfi 11458 fisumss 11622 fprodssdc 11820 phimullem 12466 eulerthlemh 12472 ctinfom 12718 ssnnctlemct 12736 f1ocpbllem 13060 f1ovscpbl 13062 xpsff1o2 13101 eqgen 13481 conjsubgen 13532 hmeoopn 14701 hmeocld 14702 hmeontr 14703 hmeoimaf1o 14704 iswomninnlem 15852 |
| Copyright terms: Public domain | W3C validator |