| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1of1 | GIF version | ||
| Description: A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1of1 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 5266 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 –1-1→wf1 5256 –onto→wfo 5257 –1-1-onto→wf1o 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1o 5266 |
| This theorem is referenced by: f1of 5507 f1sng 5549 f1oresrab 5730 f1ocnvfvrneq 5832 isores3 5865 isoini2 5869 f1oiso 5876 f1opw2 6133 tposf12 6336 enssdom 6830 mapen 6916 ssenen 6921 phplem4 6925 phplem4on 6937 fidceq 6939 en2eqpr 6977 fiintim 7001 f1finf1o 7022 preimaf1ofi 7026 isotilem 7081 inresflem 7135 casefun 7160 endjusym 7171 dju1p1e2 7278 frec2uzled 10540 iseqf1olemnab 10612 iseqf1olemab 10613 iseqf1olemnanb 10614 seqf1oglem1 10630 hashen 10895 hashfacen 10947 negfi 11412 fisumss 11576 fprodssdc 11774 phimullem 12420 eulerthlemh 12426 ctinfom 12672 ssnnctlemct 12690 f1ocpbllem 13014 f1ovscpbl 13016 xpsff1o2 13055 eqgen 13435 conjsubgen 13486 hmeoopn 14655 hmeocld 14656 hmeontr 14657 hmeoimaf1o 14658 iswomninnlem 15806 |
| Copyright terms: Public domain | W3C validator |