| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1of1 | GIF version | ||
| Description: A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1of1 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 5277 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 –1-1→wf1 5267 –onto→wfo 5268 –1-1-onto→wf1o 5269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1o 5277 |
| This theorem is referenced by: f1of 5521 f1sng 5563 f1oresrab 5744 f1ocnvfvrneq 5850 isores3 5883 isoini2 5887 f1oiso 5894 f1opw2 6151 tposf12 6354 enssdom 6852 mapen 6942 ssenen 6947 phplem4 6951 phplem4on 6963 fidceq 6965 en2eqpr 7003 fiintim 7027 f1finf1o 7048 preimaf1ofi 7052 isotilem 7107 inresflem 7161 casefun 7186 endjusym 7197 dju1p1e2 7304 frec2uzled 10572 iseqf1olemnab 10644 iseqf1olemab 10645 iseqf1olemnanb 10646 seqf1oglem1 10662 hashen 10927 hashfacen 10979 negfi 11481 fisumss 11645 fprodssdc 11843 phimullem 12489 eulerthlemh 12495 ctinfom 12741 ssnnctlemct 12759 f1ocpbllem 13084 f1ovscpbl 13086 xpsff1o2 13125 eqgen 13505 conjsubgen 13556 hmeoopn 14725 hmeocld 14726 hmeontr 14727 hmeoimaf1o 14728 iswomninnlem 15921 |
| Copyright terms: Public domain | W3C validator |