![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1of1 | GIF version |
Description: A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1of1 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1o 5261 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 –1-1→wf1 5251 –onto→wfo 5252 –1-1-onto→wf1o 5253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-f1o 5261 |
This theorem is referenced by: f1of 5500 f1sng 5542 f1oresrab 5723 f1ocnvfvrneq 5825 isores3 5858 isoini2 5862 f1oiso 5869 f1opw2 6124 tposf12 6322 enssdom 6816 mapen 6902 ssenen 6907 phplem4 6911 phplem4on 6923 fidceq 6925 en2eqpr 6963 fiintim 6985 f1finf1o 7006 preimaf1ofi 7010 isotilem 7065 inresflem 7119 casefun 7144 endjusym 7155 dju1p1e2 7257 frec2uzled 10500 iseqf1olemnab 10572 iseqf1olemab 10573 iseqf1olemnanb 10574 seqf1oglem1 10590 hashen 10855 hashfacen 10907 negfi 11371 fisumss 11535 fprodssdc 11733 phimullem 12363 eulerthlemh 12369 ctinfom 12585 ssnnctlemct 12603 f1ocpbllem 12893 f1ovscpbl 12895 xpsff1o2 12934 eqgen 13297 conjsubgen 13348 hmeoopn 14479 hmeocld 14480 hmeontr 14481 hmeoimaf1o 14482 iswomninnlem 15539 |
Copyright terms: Public domain | W3C validator |