| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1of1 | GIF version | ||
| Description: A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1of1 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 5287 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 –1-1→wf1 5277 –onto→wfo 5278 –1-1-onto→wf1o 5279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1o 5287 |
| This theorem is referenced by: f1of 5534 f1sng 5577 f1oresrab 5758 f1ocnvfvrneq 5864 isores3 5897 isoini2 5901 f1oiso 5908 f1opw2 6165 tposf12 6368 enssdom 6866 mapen 6958 ssenen 6963 phplem4 6967 phplem4on 6979 fidceq 6981 en2eqpr 7019 fiintim 7043 f1finf1o 7064 preimaf1ofi 7068 isotilem 7123 inresflem 7177 casefun 7202 endjusym 7213 dju1p1e2 7321 frec2uzled 10596 iseqf1olemnab 10668 iseqf1olemab 10669 iseqf1olemnanb 10670 seqf1oglem1 10686 hashen 10951 hashfacen 11003 negfi 11614 fisumss 11778 fprodssdc 11976 phimullem 12622 eulerthlemh 12628 ctinfom 12874 ssnnctlemct 12892 f1ocpbllem 13217 f1ovscpbl 13219 xpsff1o2 13258 eqgen 13638 conjsubgen 13689 hmeoopn 14858 hmeocld 14859 hmeontr 14860 hmeoimaf1o 14861 iswomninnlem 16129 |
| Copyright terms: Public domain | W3C validator |