Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1of1 | GIF version |
Description: A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1of1 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1o 5174 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 –1-1→wf1 5164 –onto→wfo 5165 –1-1-onto→wf1o 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-f1o 5174 |
This theorem is referenced by: f1of 5411 f1sng 5453 f1oresrab 5629 f1ocnvfvrneq 5727 isores3 5760 isoini2 5764 f1oiso 5771 f1opw2 6020 tposf12 6210 enssdom 6700 mapen 6784 ssenen 6789 phplem4 6793 phplem4on 6805 fidceq 6807 en2eqpr 6845 fiintim 6866 f1finf1o 6884 preimaf1ofi 6888 isotilem 6942 inresflem 6994 casefun 7019 endjusym 7030 dju1p1e2 7115 frec2uzled 10310 iseqf1olemnab 10369 iseqf1olemab 10370 iseqf1olemnanb 10371 hashen 10640 hashfacen 10689 negfi 11109 fisumss 11271 fprodssdc 11469 phimullem 12077 eulerthlemh 12083 ctinfom 12129 hmeoopn 12671 hmeocld 12672 hmeontr 12673 hmeoimaf1o 12674 iswomninnlem 13582 |
Copyright terms: Public domain | W3C validator |