| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frecuzrdgtclt | GIF version | ||
| Description: The recursive definition generator on upper integers is a function. (Contributed by Jim Kingdon, 22-Apr-2022.) |
| Ref | Expression |
|---|---|
| frecuzrdgrclt.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| frecuzrdgrclt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| frecuzrdgrclt.t | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
| frecuzrdgrclt.f | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| frecuzrdgrclt.r | ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
| frecuzrdgtclt.3 | ⊢ (𝜑 → 𝑃 = ran 𝑅) |
| Ref | Expression |
|---|---|
| frecuzrdgtclt | ⊢ (𝜑 → 𝑃:(ℤ≥‘𝐶)⟶𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frecuzrdgrclt.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 2 | frecuzrdgrclt.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 3 | frecuzrdgrclt.t | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | |
| 4 | frecuzrdgrclt.f | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
| 5 | frecuzrdgrclt.r | . . . . 5 ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) | |
| 6 | 1, 2, 3, 4, 5 | frecuzrdgfun 10642 | . . . 4 ⊢ (𝜑 → Fun ran 𝑅) |
| 7 | frecuzrdgtclt.3 | . . . . 5 ⊢ (𝜑 → 𝑃 = ran 𝑅) | |
| 8 | 7 | funeqd 5340 | . . . 4 ⊢ (𝜑 → (Fun 𝑃 ↔ Fun ran 𝑅)) |
| 9 | 6, 8 | mpbird 167 | . . 3 ⊢ (𝜑 → Fun 𝑃) |
| 10 | 7 | dmeqd 4925 | . . . 4 ⊢ (𝜑 → dom 𝑃 = dom ran 𝑅) |
| 11 | 1, 2, 3, 4, 5 | frecuzrdgdom 10640 | . . . 4 ⊢ (𝜑 → dom ran 𝑅 = (ℤ≥‘𝐶)) |
| 12 | 10, 11 | eqtrd 2262 | . . 3 ⊢ (𝜑 → dom 𝑃 = (ℤ≥‘𝐶)) |
| 13 | df-fn 5321 | . . 3 ⊢ (𝑃 Fn (ℤ≥‘𝐶) ↔ (Fun 𝑃 ∧ dom 𝑃 = (ℤ≥‘𝐶))) | |
| 14 | 9, 12, 13 | sylanbrc 417 | . 2 ⊢ (𝜑 → 𝑃 Fn (ℤ≥‘𝐶)) |
| 15 | 1, 2, 3, 4, 5 | frecuzrdgrclt 10637 | . . . 4 ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
| 16 | frn 5482 | . . . 4 ⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → ran 𝑅 ⊆ ((ℤ≥‘𝐶) × 𝑆)) | |
| 17 | 15, 16 | syl 14 | . . 3 ⊢ (𝜑 → ran 𝑅 ⊆ ((ℤ≥‘𝐶) × 𝑆)) |
| 18 | 7, 17 | eqsstrd 3260 | . 2 ⊢ (𝜑 → 𝑃 ⊆ ((ℤ≥‘𝐶) × 𝑆)) |
| 19 | dff2 5779 | . 2 ⊢ (𝑃:(ℤ≥‘𝐶)⟶𝑆 ↔ (𝑃 Fn (ℤ≥‘𝐶) ∧ 𝑃 ⊆ ((ℤ≥‘𝐶) × 𝑆))) | |
| 20 | 14, 18, 19 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝑃:(ℤ≥‘𝐶)⟶𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 〈cop 3669 ωcom 4682 × cxp 4717 dom cdm 4719 ran crn 4720 Fun wfun 5312 Fn wfn 5313 ⟶wf 5314 ‘cfv 5318 (class class class)co 6001 ∈ cmpo 6003 freccfrec 6536 1c1 8000 + caddc 8002 ℤcz 9446 ℤ≥cuz 9722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 |
| This theorem is referenced by: frecuzrdg0t 10644 frecuzrdgsuctlem 10645 seqf 10686 seqf2 10690 |
| Copyright terms: Public domain | W3C validator |