ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgtclt GIF version

Theorem frecuzrdgtclt 10530
Description: The recursive definition generator on upper integers is a function. (Contributed by Jim Kingdon, 22-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c (𝜑𝐶 ∈ ℤ)
frecuzrdgrclt.a (𝜑𝐴𝑆)
frecuzrdgrclt.t (𝜑𝑆𝑇)
frecuzrdgrclt.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrclt.r 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgtclt.3 (𝜑𝑃 = ran 𝑅)
Assertion
Ref Expression
frecuzrdgtclt (𝜑𝑃:(ℤ𝐶)⟶𝑆)
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑃(𝑥,𝑦)

Proof of Theorem frecuzrdgtclt
StepHypRef Expression
1 frecuzrdgrclt.c . . . . 5 (𝜑𝐶 ∈ ℤ)
2 frecuzrdgrclt.a . . . . 5 (𝜑𝐴𝑆)
3 frecuzrdgrclt.t . . . . 5 (𝜑𝑆𝑇)
4 frecuzrdgrclt.f . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5 frecuzrdgrclt.r . . . . 5 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
61, 2, 3, 4, 5frecuzrdgfun 10529 . . . 4 (𝜑 → Fun ran 𝑅)
7 frecuzrdgtclt.3 . . . . 5 (𝜑𝑃 = ran 𝑅)
87funeqd 5281 . . . 4 (𝜑 → (Fun 𝑃 ↔ Fun ran 𝑅))
96, 8mpbird 167 . . 3 (𝜑 → Fun 𝑃)
107dmeqd 4869 . . . 4 (𝜑 → dom 𝑃 = dom ran 𝑅)
111, 2, 3, 4, 5frecuzrdgdom 10527 . . . 4 (𝜑 → dom ran 𝑅 = (ℤ𝐶))
1210, 11eqtrd 2229 . . 3 (𝜑 → dom 𝑃 = (ℤ𝐶))
13 df-fn 5262 . . 3 (𝑃 Fn (ℤ𝐶) ↔ (Fun 𝑃 ∧ dom 𝑃 = (ℤ𝐶)))
149, 12, 13sylanbrc 417 . 2 (𝜑𝑃 Fn (ℤ𝐶))
151, 2, 3, 4, 5frecuzrdgrclt 10524 . . . 4 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
16 frn 5419 . . . 4 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆))
1715, 16syl 14 . . 3 (𝜑 → ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆))
187, 17eqsstrd 3220 . 2 (𝜑𝑃 ⊆ ((ℤ𝐶) × 𝑆))
19 dff2 5709 . 2 (𝑃:(ℤ𝐶)⟶𝑆 ↔ (𝑃 Fn (ℤ𝐶) ∧ 𝑃 ⊆ ((ℤ𝐶) × 𝑆)))
2014, 18, 19sylanbrc 417 1 (𝜑𝑃:(ℤ𝐶)⟶𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wss 3157  cop 3626  ωcom 4627   × cxp 4662  dom cdm 4664  ran crn 4665  Fun wfun 5253   Fn wfn 5254  wf 5255  cfv 5259  (class class class)co 5925  cmpo 5927  freccfrec 6457  1c1 7897   + caddc 7899  cz 9343  cuz 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619
This theorem is referenced by:  frecuzrdg0t  10531  frecuzrdgsuctlem  10532  seqf  10573  seqf2  10577
  Copyright terms: Public domain W3C validator