![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frecuzrdgtclt | GIF version |
Description: The recursive definition generator on upper integers is a function. (Contributed by Jim Kingdon, 22-Apr-2022.) |
Ref | Expression |
---|---|
frecuzrdgrclt.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frecuzrdgrclt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
frecuzrdgrclt.t | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
frecuzrdgrclt.f | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
frecuzrdgrclt.r | ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) |
frecuzrdgtclt.3 | ⊢ (𝜑 → 𝑃 = ran 𝑅) |
Ref | Expression |
---|---|
frecuzrdgtclt | ⊢ (𝜑 → 𝑃:(ℤ≥‘𝐶)⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frecuzrdgrclt.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
2 | frecuzrdgrclt.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | frecuzrdgrclt.t | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | |
4 | frecuzrdgrclt.f | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
5 | frecuzrdgrclt.r | . . . . 5 ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) | |
6 | 1, 2, 3, 4, 5 | frecuzrdgfun 10420 | . . . 4 ⊢ (𝜑 → Fun ran 𝑅) |
7 | frecuzrdgtclt.3 | . . . . 5 ⊢ (𝜑 → 𝑃 = ran 𝑅) | |
8 | 7 | funeqd 5239 | . . . 4 ⊢ (𝜑 → (Fun 𝑃 ↔ Fun ran 𝑅)) |
9 | 6, 8 | mpbird 167 | . . 3 ⊢ (𝜑 → Fun 𝑃) |
10 | 7 | dmeqd 4830 | . . . 4 ⊢ (𝜑 → dom 𝑃 = dom ran 𝑅) |
11 | 1, 2, 3, 4, 5 | frecuzrdgdom 10418 | . . . 4 ⊢ (𝜑 → dom ran 𝑅 = (ℤ≥‘𝐶)) |
12 | 10, 11 | eqtrd 2210 | . . 3 ⊢ (𝜑 → dom 𝑃 = (ℤ≥‘𝐶)) |
13 | df-fn 5220 | . . 3 ⊢ (𝑃 Fn (ℤ≥‘𝐶) ↔ (Fun 𝑃 ∧ dom 𝑃 = (ℤ≥‘𝐶))) | |
14 | 9, 12, 13 | sylanbrc 417 | . 2 ⊢ (𝜑 → 𝑃 Fn (ℤ≥‘𝐶)) |
15 | 1, 2, 3, 4, 5 | frecuzrdgrclt 10415 | . . . 4 ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
16 | frn 5375 | . . . 4 ⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → ran 𝑅 ⊆ ((ℤ≥‘𝐶) × 𝑆)) | |
17 | 15, 16 | syl 14 | . . 3 ⊢ (𝜑 → ran 𝑅 ⊆ ((ℤ≥‘𝐶) × 𝑆)) |
18 | 7, 17 | eqsstrd 3192 | . 2 ⊢ (𝜑 → 𝑃 ⊆ ((ℤ≥‘𝐶) × 𝑆)) |
19 | dff2 5661 | . 2 ⊢ (𝑃:(ℤ≥‘𝐶)⟶𝑆 ↔ (𝑃 Fn (ℤ≥‘𝐶) ∧ 𝑃 ⊆ ((ℤ≥‘𝐶) × 𝑆))) | |
20 | 14, 18, 19 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝑃:(ℤ≥‘𝐶)⟶𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ⊆ wss 3130 ⟨cop 3596 ωcom 4590 × cxp 4625 dom cdm 4627 ran crn 4628 Fun wfun 5211 Fn wfn 5212 ⟶wf 5213 ‘cfv 5217 (class class class)co 5875 ∈ cmpo 5877 freccfrec 6391 1c1 7812 + caddc 7814 ℤcz 9253 ℤ≥cuz 9528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-iord 4367 df-on 4369 df-ilim 4370 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-frec 6392 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-inn 8920 df-n0 9177 df-z 9254 df-uz 9529 |
This theorem is referenced by: frecuzrdg0t 10422 frecuzrdgsuctlem 10423 seqf 10461 seqf2 10464 |
Copyright terms: Public domain | W3C validator |