Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frecuzrdgtclt | GIF version |
Description: The recursive definition generator on upper integers is a function. (Contributed by Jim Kingdon, 22-Apr-2022.) |
Ref | Expression |
---|---|
frecuzrdgrclt.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frecuzrdgrclt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
frecuzrdgrclt.t | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
frecuzrdgrclt.f | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
frecuzrdgrclt.r | ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
frecuzrdgtclt.3 | ⊢ (𝜑 → 𝑃 = ran 𝑅) |
Ref | Expression |
---|---|
frecuzrdgtclt | ⊢ (𝜑 → 𝑃:(ℤ≥‘𝐶)⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frecuzrdgrclt.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
2 | frecuzrdgrclt.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | frecuzrdgrclt.t | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | |
4 | frecuzrdgrclt.f | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
5 | frecuzrdgrclt.r | . . . . 5 ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) | |
6 | 1, 2, 3, 4, 5 | frecuzrdgfun 10363 | . . . 4 ⊢ (𝜑 → Fun ran 𝑅) |
7 | frecuzrdgtclt.3 | . . . . 5 ⊢ (𝜑 → 𝑃 = ran 𝑅) | |
8 | 7 | funeqd 5218 | . . . 4 ⊢ (𝜑 → (Fun 𝑃 ↔ Fun ran 𝑅)) |
9 | 6, 8 | mpbird 166 | . . 3 ⊢ (𝜑 → Fun 𝑃) |
10 | 7 | dmeqd 4811 | . . . 4 ⊢ (𝜑 → dom 𝑃 = dom ran 𝑅) |
11 | 1, 2, 3, 4, 5 | frecuzrdgdom 10361 | . . . 4 ⊢ (𝜑 → dom ran 𝑅 = (ℤ≥‘𝐶)) |
12 | 10, 11 | eqtrd 2203 | . . 3 ⊢ (𝜑 → dom 𝑃 = (ℤ≥‘𝐶)) |
13 | df-fn 5199 | . . 3 ⊢ (𝑃 Fn (ℤ≥‘𝐶) ↔ (Fun 𝑃 ∧ dom 𝑃 = (ℤ≥‘𝐶))) | |
14 | 9, 12, 13 | sylanbrc 415 | . 2 ⊢ (𝜑 → 𝑃 Fn (ℤ≥‘𝐶)) |
15 | 1, 2, 3, 4, 5 | frecuzrdgrclt 10358 | . . . 4 ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
16 | frn 5354 | . . . 4 ⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → ran 𝑅 ⊆ ((ℤ≥‘𝐶) × 𝑆)) | |
17 | 15, 16 | syl 14 | . . 3 ⊢ (𝜑 → ran 𝑅 ⊆ ((ℤ≥‘𝐶) × 𝑆)) |
18 | 7, 17 | eqsstrd 3183 | . 2 ⊢ (𝜑 → 𝑃 ⊆ ((ℤ≥‘𝐶) × 𝑆)) |
19 | dff2 5637 | . 2 ⊢ (𝑃:(ℤ≥‘𝐶)⟶𝑆 ↔ (𝑃 Fn (ℤ≥‘𝐶) ∧ 𝑃 ⊆ ((ℤ≥‘𝐶) × 𝑆))) | |
20 | 14, 18, 19 | sylanbrc 415 | 1 ⊢ (𝜑 → 𝑃:(ℤ≥‘𝐶)⟶𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ⊆ wss 3121 〈cop 3584 ωcom 4572 × cxp 4607 dom cdm 4609 ran crn 4610 Fun wfun 5190 Fn wfn 5191 ⟶wf 5192 ‘cfv 5196 (class class class)co 5850 ∈ cmpo 5852 freccfrec 6366 1c1 7762 + caddc 7764 ℤcz 9199 ℤ≥cuz 9474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-frec 6367 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-inn 8866 df-n0 9123 df-z 9200 df-uz 9475 |
This theorem is referenced by: frecuzrdg0t 10365 frecuzrdgsuctlem 10366 seqf 10404 seqf2 10407 |
Copyright terms: Public domain | W3C validator |