Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frecuzrdgtclt | GIF version |
Description: The recursive definition generator on upper integers is a function. (Contributed by Jim Kingdon, 22-Apr-2022.) |
Ref | Expression |
---|---|
frecuzrdgrclt.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frecuzrdgrclt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
frecuzrdgrclt.t | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
frecuzrdgrclt.f | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
frecuzrdgrclt.r | ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
frecuzrdgtclt.3 | ⊢ (𝜑 → 𝑃 = ran 𝑅) |
Ref | Expression |
---|---|
frecuzrdgtclt | ⊢ (𝜑 → 𝑃:(ℤ≥‘𝐶)⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frecuzrdgrclt.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
2 | frecuzrdgrclt.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | frecuzrdgrclt.t | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | |
4 | frecuzrdgrclt.f | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
5 | frecuzrdgrclt.r | . . . . 5 ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) | |
6 | 1, 2, 3, 4, 5 | frecuzrdgfun 10376 | . . . 4 ⊢ (𝜑 → Fun ran 𝑅) |
7 | frecuzrdgtclt.3 | . . . . 5 ⊢ (𝜑 → 𝑃 = ran 𝑅) | |
8 | 7 | funeqd 5220 | . . . 4 ⊢ (𝜑 → (Fun 𝑃 ↔ Fun ran 𝑅)) |
9 | 6, 8 | mpbird 166 | . . 3 ⊢ (𝜑 → Fun 𝑃) |
10 | 7 | dmeqd 4813 | . . . 4 ⊢ (𝜑 → dom 𝑃 = dom ran 𝑅) |
11 | 1, 2, 3, 4, 5 | frecuzrdgdom 10374 | . . . 4 ⊢ (𝜑 → dom ran 𝑅 = (ℤ≥‘𝐶)) |
12 | 10, 11 | eqtrd 2203 | . . 3 ⊢ (𝜑 → dom 𝑃 = (ℤ≥‘𝐶)) |
13 | df-fn 5201 | . . 3 ⊢ (𝑃 Fn (ℤ≥‘𝐶) ↔ (Fun 𝑃 ∧ dom 𝑃 = (ℤ≥‘𝐶))) | |
14 | 9, 12, 13 | sylanbrc 415 | . 2 ⊢ (𝜑 → 𝑃 Fn (ℤ≥‘𝐶)) |
15 | 1, 2, 3, 4, 5 | frecuzrdgrclt 10371 | . . . 4 ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
16 | frn 5356 | . . . 4 ⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → ran 𝑅 ⊆ ((ℤ≥‘𝐶) × 𝑆)) | |
17 | 15, 16 | syl 14 | . . 3 ⊢ (𝜑 → ran 𝑅 ⊆ ((ℤ≥‘𝐶) × 𝑆)) |
18 | 7, 17 | eqsstrd 3183 | . 2 ⊢ (𝜑 → 𝑃 ⊆ ((ℤ≥‘𝐶) × 𝑆)) |
19 | dff2 5640 | . 2 ⊢ (𝑃:(ℤ≥‘𝐶)⟶𝑆 ↔ (𝑃 Fn (ℤ≥‘𝐶) ∧ 𝑃 ⊆ ((ℤ≥‘𝐶) × 𝑆))) | |
20 | 14, 18, 19 | sylanbrc 415 | 1 ⊢ (𝜑 → 𝑃:(ℤ≥‘𝐶)⟶𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ⊆ wss 3121 〈cop 3586 ωcom 4574 × cxp 4609 dom cdm 4611 ran crn 4612 Fun wfun 5192 Fn wfn 5193 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 ∈ cmpo 5855 freccfrec 6369 1c1 7775 + caddc 7777 ℤcz 9212 ℤ≥cuz 9487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 |
This theorem is referenced by: frecuzrdg0t 10378 frecuzrdgsuctlem 10379 seqf 10417 seqf2 10420 |
Copyright terms: Public domain | W3C validator |