Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funimaex | GIF version |
Description: The image of a set under any function is also a set. Equivalent of Axiom of Replacement. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.) |
Ref | Expression |
---|---|
zfrep5.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
funimaex | ⊢ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfrep5.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | funimaexg 5272 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
3 | 1, 2 | mpan2 422 | 1 ⊢ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 Vcvv 2726 “ cima 4607 Fun wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 |
This theorem is referenced by: isarep2 5275 isose 5789 f1opw 6045 |
Copyright terms: Public domain | W3C validator |