Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzom1p1elfzo | GIF version |
Description: Increasing an element of a half-open range of nonnegative integers by 1 results in an element of the half-open range of nonnegative integers with an upper bound increased by 1. (Contributed by Alexander van der Vekens, 1-Aug-2018.) |
Ref | Expression |
---|---|
elfzom1p1elfzo | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (0..^(𝑁 − 1))) → (𝑋 + 1) ∈ (0..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo0 10138 | . . 3 ⊢ (𝑋 ∈ (0..^(𝑁 − 1)) ↔ (𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1))) | |
2 | peano2nn0 9175 | . . . . . . 7 ⊢ (𝑋 ∈ ℕ0 → (𝑋 + 1) ∈ ℕ0) | |
3 | 2 | 3ad2ant1 1013 | . . . . . 6 ⊢ ((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) → (𝑋 + 1) ∈ ℕ0) |
4 | 3 | adantr 274 | . . . . 5 ⊢ (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑋 + 1) ∈ ℕ0) |
5 | simpr 109 | . . . . 5 ⊢ (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
6 | nn0re 9144 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ ℕ0 → 𝑋 ∈ ℝ) | |
7 | 6 | adantr 274 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ ℝ) |
8 | 1red 7935 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ) | |
9 | nnre 8885 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
10 | 9 | adantl 275 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ) |
11 | 7, 8, 10 | ltaddsubd 8464 | . . . . . . . . 9 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((𝑋 + 1) < 𝑁 ↔ 𝑋 < (𝑁 − 1))) |
12 | 11 | biimprd 157 | . . . . . . . 8 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝑋 < (𝑁 − 1) → (𝑋 + 1) < 𝑁)) |
13 | 12 | impancom 258 | . . . . . . 7 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑋 < (𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) < 𝑁)) |
14 | 13 | 3adant2 1011 | . . . . . 6 ⊢ ((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) < 𝑁)) |
15 | 14 | imp 123 | . . . . 5 ⊢ (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑋 + 1) < 𝑁) |
16 | elfzo0 10138 | . . . . 5 ⊢ ((𝑋 + 1) ∈ (0..^𝑁) ↔ ((𝑋 + 1) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝑋 + 1) < 𝑁)) | |
17 | 4, 5, 15, 16 | syl3anbrc 1176 | . . . 4 ⊢ (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑋 + 1) ∈ (0..^𝑁)) |
18 | 17 | ex 114 | . . 3 ⊢ ((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) ∈ (0..^𝑁))) |
19 | 1, 18 | sylbi 120 | . 2 ⊢ (𝑋 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) ∈ (0..^𝑁))) |
20 | 19 | impcom 124 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (0..^(𝑁 − 1))) → (𝑋 + 1) ∈ (0..^𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 ℝcr 7773 0cc0 7774 1c1 7775 + caddc 7777 < clt 7954 − cmin 8090 ℕcn 8878 ℕ0cn0 9135 ..^cfzo 10098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-fzo 10099 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |