![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzom1p1elfzo | GIF version |
Description: Increasing an element of a half-open range of nonnegative integers by 1 results in an element of the half-open range of nonnegative integers with an upper bound increased by 1. (Contributed by Alexander van der Vekens, 1-Aug-2018.) |
Ref | Expression |
---|---|
elfzom1p1elfzo | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (0..^(𝑁 − 1))) → (𝑋 + 1) ∈ (0..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo0 9800 | . . 3 ⊢ (𝑋 ∈ (0..^(𝑁 − 1)) ↔ (𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1))) | |
2 | peano2nn0 8869 | . . . . . . 7 ⊢ (𝑋 ∈ ℕ0 → (𝑋 + 1) ∈ ℕ0) | |
3 | 2 | 3ad2ant1 970 | . . . . . 6 ⊢ ((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) → (𝑋 + 1) ∈ ℕ0) |
4 | 3 | adantr 272 | . . . . 5 ⊢ (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑋 + 1) ∈ ℕ0) |
5 | simpr 109 | . . . . 5 ⊢ (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
6 | nn0re 8838 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ ℕ0 → 𝑋 ∈ ℝ) | |
7 | 6 | adantr 272 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ ℝ) |
8 | 1red 7653 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ) | |
9 | nnre 8585 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
10 | 9 | adantl 273 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ) |
11 | 7, 8, 10 | ltaddsubd 8173 | . . . . . . . . 9 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((𝑋 + 1) < 𝑁 ↔ 𝑋 < (𝑁 − 1))) |
12 | 11 | biimprd 157 | . . . . . . . 8 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝑋 < (𝑁 − 1) → (𝑋 + 1) < 𝑁)) |
13 | 12 | impancom 258 | . . . . . . 7 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑋 < (𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) < 𝑁)) |
14 | 13 | 3adant2 968 | . . . . . 6 ⊢ ((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) < 𝑁)) |
15 | 14 | imp 123 | . . . . 5 ⊢ (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑋 + 1) < 𝑁) |
16 | elfzo0 9800 | . . . . 5 ⊢ ((𝑋 + 1) ∈ (0..^𝑁) ↔ ((𝑋 + 1) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝑋 + 1) < 𝑁)) | |
17 | 4, 5, 15, 16 | syl3anbrc 1133 | . . . 4 ⊢ (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑋 + 1) ∈ (0..^𝑁)) |
18 | 17 | ex 114 | . . 3 ⊢ ((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) ∈ (0..^𝑁))) |
19 | 1, 18 | sylbi 120 | . 2 ⊢ (𝑋 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) ∈ (0..^𝑁))) |
20 | 19 | impcom 124 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (0..^(𝑁 − 1))) → (𝑋 + 1) ∈ (0..^𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 930 ∈ wcel 1448 class class class wbr 3875 (class class class)co 5706 ℝcr 7499 0cc0 7500 1c1 7501 + caddc 7503 < clt 7672 − cmin 7804 ℕcn 8578 ℕ0cn0 8829 ..^cfzo 9760 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-addcom 7595 ax-addass 7597 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-0id 7603 ax-rnegex 7604 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-ltadd 7611 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-inn 8579 df-n0 8830 df-z 8907 df-uz 9177 df-fz 9632 df-fzo 9761 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |