Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzom1p1elfzo | GIF version |
Description: Increasing an element of a half-open range of nonnegative integers by 1 results in an element of the half-open range of nonnegative integers with an upper bound increased by 1. (Contributed by Alexander van der Vekens, 1-Aug-2018.) |
Ref | Expression |
---|---|
elfzom1p1elfzo | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (0..^(𝑁 − 1))) → (𝑋 + 1) ∈ (0..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo0 10117 | . . 3 ⊢ (𝑋 ∈ (0..^(𝑁 − 1)) ↔ (𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1))) | |
2 | peano2nn0 9154 | . . . . . . 7 ⊢ (𝑋 ∈ ℕ0 → (𝑋 + 1) ∈ ℕ0) | |
3 | 2 | 3ad2ant1 1008 | . . . . . 6 ⊢ ((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) → (𝑋 + 1) ∈ ℕ0) |
4 | 3 | adantr 274 | . . . . 5 ⊢ (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑋 + 1) ∈ ℕ0) |
5 | simpr 109 | . . . . 5 ⊢ (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
6 | nn0re 9123 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ ℕ0 → 𝑋 ∈ ℝ) | |
7 | 6 | adantr 274 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ ℝ) |
8 | 1red 7914 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ) | |
9 | nnre 8864 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
10 | 9 | adantl 275 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ) |
11 | 7, 8, 10 | ltaddsubd 8443 | . . . . . . . . 9 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((𝑋 + 1) < 𝑁 ↔ 𝑋 < (𝑁 − 1))) |
12 | 11 | biimprd 157 | . . . . . . . 8 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝑋 < (𝑁 − 1) → (𝑋 + 1) < 𝑁)) |
13 | 12 | impancom 258 | . . . . . . 7 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑋 < (𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) < 𝑁)) |
14 | 13 | 3adant2 1006 | . . . . . 6 ⊢ ((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) < 𝑁)) |
15 | 14 | imp 123 | . . . . 5 ⊢ (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑋 + 1) < 𝑁) |
16 | elfzo0 10117 | . . . . 5 ⊢ ((𝑋 + 1) ∈ (0..^𝑁) ↔ ((𝑋 + 1) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝑋 + 1) < 𝑁)) | |
17 | 4, 5, 15, 16 | syl3anbrc 1171 | . . . 4 ⊢ (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑋 + 1) ∈ (0..^𝑁)) |
18 | 17 | ex 114 | . . 3 ⊢ ((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) ∈ (0..^𝑁))) |
19 | 1, 18 | sylbi 120 | . 2 ⊢ (𝑋 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) ∈ (0..^𝑁))) |
20 | 19 | impcom 124 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (0..^(𝑁 − 1))) → (𝑋 + 1) ∈ (0..^𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 ∈ wcel 2136 class class class wbr 3982 (class class class)co 5842 ℝcr 7752 0cc0 7753 1c1 7754 + caddc 7756 < clt 7933 − cmin 8069 ℕcn 8857 ℕ0cn0 9114 ..^cfzo 10077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-fzo 10078 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |