![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzom1p1elfzo | GIF version |
Description: Increasing an element of a half-open range of nonnegative integers by 1 results in an element of the half-open range of nonnegative integers with an upper bound increased by 1. (Contributed by Alexander van der Vekens, 1-Aug-2018.) |
Ref | Expression |
---|---|
elfzom1p1elfzo | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (0..^(𝑁 − 1))) → (𝑋 + 1) ∈ (0..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo0 10249 | . . 3 ⊢ (𝑋 ∈ (0..^(𝑁 − 1)) ↔ (𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1))) | |
2 | peano2nn0 9280 | . . . . . . 7 ⊢ (𝑋 ∈ ℕ0 → (𝑋 + 1) ∈ ℕ0) | |
3 | 2 | 3ad2ant1 1020 | . . . . . 6 ⊢ ((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) → (𝑋 + 1) ∈ ℕ0) |
4 | 3 | adantr 276 | . . . . 5 ⊢ (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑋 + 1) ∈ ℕ0) |
5 | simpr 110 | . . . . 5 ⊢ (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
6 | nn0re 9249 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ ℕ0 → 𝑋 ∈ ℝ) | |
7 | 6 | adantr 276 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ ℝ) |
8 | 1red 8034 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ) | |
9 | nnre 8989 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
10 | 9 | adantl 277 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ) |
11 | 7, 8, 10 | ltaddsubd 8564 | . . . . . . . . 9 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((𝑋 + 1) < 𝑁 ↔ 𝑋 < (𝑁 − 1))) |
12 | 11 | biimprd 158 | . . . . . . . 8 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝑋 < (𝑁 − 1) → (𝑋 + 1) < 𝑁)) |
13 | 12 | impancom 260 | . . . . . . 7 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑋 < (𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) < 𝑁)) |
14 | 13 | 3adant2 1018 | . . . . . 6 ⊢ ((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) < 𝑁)) |
15 | 14 | imp 124 | . . . . 5 ⊢ (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑋 + 1) < 𝑁) |
16 | elfzo0 10249 | . . . . 5 ⊢ ((𝑋 + 1) ∈ (0..^𝑁) ↔ ((𝑋 + 1) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝑋 + 1) < 𝑁)) | |
17 | 4, 5, 15, 16 | syl3anbrc 1183 | . . . 4 ⊢ (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑋 + 1) ∈ (0..^𝑁)) |
18 | 17 | ex 115 | . . 3 ⊢ ((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) ∈ (0..^𝑁))) |
19 | 1, 18 | sylbi 121 | . 2 ⊢ (𝑋 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) ∈ (0..^𝑁))) |
20 | 19 | impcom 125 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (0..^(𝑁 − 1))) → (𝑋 + 1) ∈ (0..^𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 ℝcr 7871 0cc0 7872 1c1 7873 + caddc 7875 < clt 8054 − cmin 8190 ℕcn 8982 ℕ0cn0 9240 ..^cfzo 10208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-fz 10075 df-fzo 10209 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |