ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzom1p1elfzo GIF version

Theorem elfzom1p1elfzo 10307
Description: Increasing an element of a half-open range of nonnegative integers by 1 results in an element of the half-open range of nonnegative integers with an upper bound increased by 1. (Contributed by Alexander van der Vekens, 1-Aug-2018.)
Assertion
Ref Expression
elfzom1p1elfzo ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (0..^(𝑁 − 1))) → (𝑋 + 1) ∈ (0..^𝑁))

Proof of Theorem elfzom1p1elfzo
StepHypRef Expression
1 elfzo0 10275 . . 3 (𝑋 ∈ (0..^(𝑁 − 1)) ↔ (𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)))
2 peano2nn0 9306 . . . . . . 7 (𝑋 ∈ ℕ0 → (𝑋 + 1) ∈ ℕ0)
323ad2ant1 1020 . . . . . 6 ((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) → (𝑋 + 1) ∈ ℕ0)
43adantr 276 . . . . 5 (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑋 + 1) ∈ ℕ0)
5 simpr 110 . . . . 5 (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
6 nn0re 9275 . . . . . . . . . . 11 (𝑋 ∈ ℕ0𝑋 ∈ ℝ)
76adantr 276 . . . . . . . . . 10 ((𝑋 ∈ ℕ0𝑁 ∈ ℕ) → 𝑋 ∈ ℝ)
8 1red 8058 . . . . . . . . . 10 ((𝑋 ∈ ℕ0𝑁 ∈ ℕ) → 1 ∈ ℝ)
9 nnre 9014 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
109adantl 277 . . . . . . . . . 10 ((𝑋 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
117, 8, 10ltaddsubd 8589 . . . . . . . . 9 ((𝑋 ∈ ℕ0𝑁 ∈ ℕ) → ((𝑋 + 1) < 𝑁𝑋 < (𝑁 − 1)))
1211biimprd 158 . . . . . . . 8 ((𝑋 ∈ ℕ0𝑁 ∈ ℕ) → (𝑋 < (𝑁 − 1) → (𝑋 + 1) < 𝑁))
1312impancom 260 . . . . . . 7 ((𝑋 ∈ ℕ0𝑋 < (𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) < 𝑁))
14133adant2 1018 . . . . . 6 ((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) < 𝑁))
1514imp 124 . . . . 5 (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑋 + 1) < 𝑁)
16 elfzo0 10275 . . . . 5 ((𝑋 + 1) ∈ (0..^𝑁) ↔ ((𝑋 + 1) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑋 + 1) < 𝑁))
174, 5, 15, 16syl3anbrc 1183 . . . 4 (((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑋 + 1) ∈ (0..^𝑁))
1817ex 115 . . 3 ((𝑋 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑋 < (𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) ∈ (0..^𝑁)))
191, 18sylbi 121 . 2 (𝑋 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℕ → (𝑋 + 1) ∈ (0..^𝑁)))
2019impcom 125 1 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (0..^(𝑁 − 1))) → (𝑋 + 1) ∈ (0..^𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2167   class class class wbr 4034  (class class class)co 5925  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   < clt 8078  cmin 8214  cn 9007  0cn0 9266  ..^cfzo 10234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator