ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neii2 GIF version

Theorem neii2 14665
Description: Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)
Assertion
Ref Expression
neii2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
Distinct variable groups:   𝑔,𝐽   𝑔,𝑁   𝑆,𝑔

Proof of Theorem neii2
StepHypRef Expression
1 eqid 2206 . . 3 𝐽 = 𝐽
21neiss2 14658 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 𝐽)
31isnei 14660 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 𝐽 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
4 simpr 110 . . . 4 ((𝑁 𝐽 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
53, 4biimtrdi 163 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
65impancom 260 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑆 𝐽 → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
72, 6mpd 13 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  wrex 2486  wss 3167   cuni 3852  cfv 5276  Topctop 14513  neicnei 14654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-top 14514  df-nei 14655
This theorem is referenced by:  neiss  14666  ssnei  14667  ssnei2  14673  innei  14679  opnneiid  14680  neissex  14681  cnpnei  14735  neitx  14784
  Copyright terms: Public domain W3C validator