ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashgcdeq GIF version

Theorem hashgcdeq 12677
Description: Number of initial positive integers with specified divisors. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
hashgcdeq ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁

Proof of Theorem hashgcdeq
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2217 . 2 ((ϕ‘(𝑀 / 𝑁)) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0) → ((♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = (ϕ‘(𝑀 / 𝑁)) ↔ (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0)))
2 eqeq2 2217 . 2 (0 = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0) → ((♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = 0 ↔ (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0)))
3 nndivdvds 12222 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ))
43biimpa 296 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℕ)
5 dfphi2 12657 . . . 4 ((𝑀 / 𝑁) ∈ ℕ → (ϕ‘(𝑀 / 𝑁)) = (♯‘{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}))
64, 5syl 14 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (ϕ‘(𝑀 / 𝑁)) = (♯‘{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}))
7 0z 9418 . . . . . 6 0 ∈ ℤ
84nnzd 9529 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℤ)
9 fzofig 10614 . . . . . 6 ((0 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ) → (0..^(𝑀 / 𝑁)) ∈ Fin)
107, 8, 9sylancr 414 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (0..^(𝑀 / 𝑁)) ∈ Fin)
11 elfzoelz 10304 . . . . . . . . . 10 (𝑦 ∈ (0..^(𝑀 / 𝑁)) → 𝑦 ∈ ℤ)
1211adantl 277 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → 𝑦 ∈ ℤ)
138adantr 276 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → (𝑀 / 𝑁) ∈ ℤ)
1412, 13gcdcld 12404 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → (𝑦 gcd (𝑀 / 𝑁)) ∈ ℕ0)
1514nn0zd 9528 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → (𝑦 gcd (𝑀 / 𝑁)) ∈ ℤ)
16 1zzd 9434 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → 1 ∈ ℤ)
17 zdceq 9483 . . . . . . 7 (((𝑦 gcd (𝑀 / 𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝑦 gcd (𝑀 / 𝑁)) = 1)
1815, 16, 17syl2anc 411 . . . . . 6 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → DECID (𝑦 gcd (𝑀 / 𝑁)) = 1)
1918ralrimiva 2581 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → ∀𝑦 ∈ (0..^(𝑀 / 𝑁))DECID (𝑦 gcd (𝑀 / 𝑁)) = 1)
2010, 19ssfirab 7059 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ∈ Fin)
21 eqid 2207 . . . . . 6 {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}
22 eqid 2207 . . . . . 6 {𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁} = {𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}
23 eqid 2207 . . . . . 6 (𝑧 ∈ {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ↦ (𝑧 · 𝑁)) = (𝑧 ∈ {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ↦ (𝑧 · 𝑁))
2421, 22, 23hashgcdlem 12675 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑧 ∈ {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ↦ (𝑧 · 𝑁)):{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}–1-1-onto→{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁})
25243expa 1206 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (𝑧 ∈ {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ↦ (𝑧 · 𝑁)):{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}–1-1-onto→{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁})
2620, 25fihasheqf1od 10971 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (♯‘{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}) = (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}))
276, 26eqtr2d 2241 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = (ϕ‘(𝑀 / 𝑁)))
28 simprr 531 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → (𝑥 gcd 𝑀) = 𝑁)
29 elfzoelz 10304 . . . . . . . . . . . . 13 (𝑥 ∈ (0..^𝑀) → 𝑥 ∈ ℤ)
3029ad2antrl 490 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → 𝑥 ∈ ℤ)
31 nnz 9426 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
3231ad2antrr 488 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℤ)
33 gcddvds 12399 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑥 gcd 𝑀) ∥ 𝑥 ∧ (𝑥 gcd 𝑀) ∥ 𝑀))
3430, 32, 33syl2anc 411 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → ((𝑥 gcd 𝑀) ∥ 𝑥 ∧ (𝑥 gcd 𝑀) ∥ 𝑀))
3534simprd 114 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → (𝑥 gcd 𝑀) ∥ 𝑀)
3628, 35eqbrtrrd 4083 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → 𝑁𝑀)
3736expr 375 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (0..^𝑀)) → ((𝑥 gcd 𝑀) = 𝑁𝑁𝑀))
3837con3d 632 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (0..^𝑀)) → (¬ 𝑁𝑀 → ¬ (𝑥 gcd 𝑀) = 𝑁))
3938impancom 260 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → (𝑥 ∈ (0..^𝑀) → ¬ (𝑥 gcd 𝑀) = 𝑁))
4039ralrimiv 2580 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → ∀𝑥 ∈ (0..^𝑀) ¬ (𝑥 gcd 𝑀) = 𝑁)
41 rabeq0 3498 . . . . 5 ({𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁} = ∅ ↔ ∀𝑥 ∈ (0..^𝑀) ¬ (𝑥 gcd 𝑀) = 𝑁)
4240, 41sylibr 134 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → {𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁} = ∅)
4342fveq2d 5603 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = (♯‘∅))
44 hash0 10978 . . 3 (♯‘∅) = 0
4543, 44eqtrdi 2256 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = 0)
46 dvdsdc 12224 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℤ) → DECID 𝑁𝑀)
4731, 46sylan2 286 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → DECID 𝑁𝑀)
4847ancoms 268 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → DECID 𝑁𝑀)
491, 2, 27, 45, 48ifbothdadc 3613 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 836   = wceq 1373  wcel 2178  wral 2486  {crab 2490  c0 3468  ifcif 3579   class class class wbr 4059  cmpt 4121  1-1-ontowf1o 5289  cfv 5290  (class class class)co 5967  Fincfn 6850  0cc0 7960  1c1 7961   · cmul 7965   / cdiv 8780  cn 9071  cz 9407  ..^cfzo 10299  chash 10957  cdvds 12213   gcd cgcd 12389  ϕcphi 12646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-phi 12648
This theorem is referenced by:  phisum  12678
  Copyright terms: Public domain W3C validator