ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashgcdeq GIF version

Theorem hashgcdeq 12222
Description: Number of initial positive integers with specified divisors. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
hashgcdeq ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁

Proof of Theorem hashgcdeq
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2187 . 2 ((ϕ‘(𝑀 / 𝑁)) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0) → ((♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = (ϕ‘(𝑀 / 𝑁)) ↔ (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0)))
2 eqeq2 2187 . 2 (0 = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0) → ((♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = 0 ↔ (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0)))
3 nndivdvds 11787 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ))
43biimpa 296 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℕ)
5 dfphi2 12203 . . . 4 ((𝑀 / 𝑁) ∈ ℕ → (ϕ‘(𝑀 / 𝑁)) = (♯‘{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}))
64, 5syl 14 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (ϕ‘(𝑀 / 𝑁)) = (♯‘{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}))
7 0z 9253 . . . . . 6 0 ∈ ℤ
84nnzd 9363 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℤ)
9 fzofig 10418 . . . . . 6 ((0 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ) → (0..^(𝑀 / 𝑁)) ∈ Fin)
107, 8, 9sylancr 414 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (0..^(𝑀 / 𝑁)) ∈ Fin)
11 elfzoelz 10133 . . . . . . . . . 10 (𝑦 ∈ (0..^(𝑀 / 𝑁)) → 𝑦 ∈ ℤ)
1211adantl 277 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → 𝑦 ∈ ℤ)
138adantr 276 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → (𝑀 / 𝑁) ∈ ℤ)
1412, 13gcdcld 11952 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → (𝑦 gcd (𝑀 / 𝑁)) ∈ ℕ0)
1514nn0zd 9362 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → (𝑦 gcd (𝑀 / 𝑁)) ∈ ℤ)
16 1zzd 9269 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → 1 ∈ ℤ)
17 zdceq 9317 . . . . . . 7 (((𝑦 gcd (𝑀 / 𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝑦 gcd (𝑀 / 𝑁)) = 1)
1815, 16, 17syl2anc 411 . . . . . 6 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → DECID (𝑦 gcd (𝑀 / 𝑁)) = 1)
1918ralrimiva 2550 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → ∀𝑦 ∈ (0..^(𝑀 / 𝑁))DECID (𝑦 gcd (𝑀 / 𝑁)) = 1)
2010, 19ssfirab 6927 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ∈ Fin)
21 eqid 2177 . . . . . 6 {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}
22 eqid 2177 . . . . . 6 {𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁} = {𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}
23 eqid 2177 . . . . . 6 (𝑧 ∈ {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ↦ (𝑧 · 𝑁)) = (𝑧 ∈ {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ↦ (𝑧 · 𝑁))
2421, 22, 23hashgcdlem 12221 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑧 ∈ {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ↦ (𝑧 · 𝑁)):{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}–1-1-onto→{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁})
25243expa 1203 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (𝑧 ∈ {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ↦ (𝑧 · 𝑁)):{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}–1-1-onto→{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁})
2620, 25fihasheqf1od 10753 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (♯‘{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}) = (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}))
276, 26eqtr2d 2211 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = (ϕ‘(𝑀 / 𝑁)))
28 simprr 531 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → (𝑥 gcd 𝑀) = 𝑁)
29 elfzoelz 10133 . . . . . . . . . . . . 13 (𝑥 ∈ (0..^𝑀) → 𝑥 ∈ ℤ)
3029ad2antrl 490 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → 𝑥 ∈ ℤ)
31 nnz 9261 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
3231ad2antrr 488 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℤ)
33 gcddvds 11947 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑥 gcd 𝑀) ∥ 𝑥 ∧ (𝑥 gcd 𝑀) ∥ 𝑀))
3430, 32, 33syl2anc 411 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → ((𝑥 gcd 𝑀) ∥ 𝑥 ∧ (𝑥 gcd 𝑀) ∥ 𝑀))
3534simprd 114 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → (𝑥 gcd 𝑀) ∥ 𝑀)
3628, 35eqbrtrrd 4024 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → 𝑁𝑀)
3736expr 375 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (0..^𝑀)) → ((𝑥 gcd 𝑀) = 𝑁𝑁𝑀))
3837con3d 631 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (0..^𝑀)) → (¬ 𝑁𝑀 → ¬ (𝑥 gcd 𝑀) = 𝑁))
3938impancom 260 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → (𝑥 ∈ (0..^𝑀) → ¬ (𝑥 gcd 𝑀) = 𝑁))
4039ralrimiv 2549 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → ∀𝑥 ∈ (0..^𝑀) ¬ (𝑥 gcd 𝑀) = 𝑁)
41 rabeq0 3452 . . . . 5 ({𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁} = ∅ ↔ ∀𝑥 ∈ (0..^𝑀) ¬ (𝑥 gcd 𝑀) = 𝑁)
4240, 41sylibr 134 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → {𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁} = ∅)
4342fveq2d 5515 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = (♯‘∅))
44 hash0 10760 . . 3 (♯‘∅) = 0
4543, 44eqtrdi 2226 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = 0)
46 dvdsdc 11789 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℤ) → DECID 𝑁𝑀)
4731, 46sylan2 286 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → DECID 𝑁𝑀)
4847ancoms 268 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → DECID 𝑁𝑀)
491, 2, 27, 45, 48ifbothdadc 3565 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  {crab 2459  c0 3422  ifcif 3534   class class class wbr 4000  cmpt 4061  1-1-ontowf1o 5211  cfv 5212  (class class class)co 5869  Fincfn 6734  0cc0 7802  1c1 7803   · cmul 7807   / cdiv 8618  cn 8908  cz 9242  ..^cfzo 10128  chash 10739  cdvds 11778   gcd cgcd 11926  ϕcphi 12192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-1o 6411  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927  df-phi 12194
This theorem is referenced by:  phisum  12223
  Copyright terms: Public domain W3C validator